Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain.text_splitter import CharacterTextSplitter
|
2 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
3 |
+
from langchain.vectorstores import Chroma
|
4 |
+
from langchain import HuggingFacePipeline
|
5 |
+
from langchain.chains import RetrievalQA
|
6 |
+
from transformers import AutoTokenizer
|
7 |
+
from langchain.retrievers import WikipediaRetriever
|
8 |
+
import pickle
|
9 |
+
import os
|
10 |
+
|
11 |
+
retriever = WikipediaRetriever(lang="en")
|
12 |
+
|
13 |
+
data = retriever.get_relevant_documents(query="Economics")
|
14 |
+
|
15 |
+
bloomz_tokenizer = AutoTokenizer.from_pretrained('bigscience/bloomz-1b7')
|
16 |
+
|
17 |
+
text_splitter = CharacterTextSplitter.from_huggingface_tokenizer(bloomz_tokenizer, chunk_size=100, chunk_overlap=0, separator='\n')
|
18 |
+
|
19 |
+
documents = text_splitter.split_documents(data)
|
20 |
+
|
21 |
+
embeddings = HuggingFaceEmbeddings()
|
22 |
+
|
23 |
+
persist_directory = "vector_db"
|
24 |
+
|
25 |
+
vectordb = Chroma.from_documents(documents=documents, embedding=embeddings, persist_directory=persist_directory)
|
26 |
+
|
27 |
+
vectordb.persist()
|
28 |
+
vectordb = None
|
29 |
+
|
30 |
+
vectordb_persist = Chroma(persist_directory=persist_directory, embedding_function=embeddings)
|
31 |
+
|
32 |
+
llm = HuggingFacePipeline.from_model_id(
|
33 |
+
model_id="bigscience/bloomz-1b7",
|
34 |
+
task="text-generation",
|
35 |
+
model_kwargs={"temperature" : 0, "max_length" : 500})
|
36 |
+
|
37 |
+
doc_retriever = vectordb_persist.as_retriever()
|
38 |
+
|
39 |
+
wikipedia_qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=doc_retriever)
|
40 |
+
|
41 |
+
def make_inference(query):
|
42 |
+
inference = wikipedia_qa.run(query)
|
43 |
+
return inference
|
44 |
+
|
45 |
+
if __name__ == "__main__":
|
46 |
+
# make a gradio interface
|
47 |
+
import gradio as gr
|
48 |
+
|
49 |
+
gr.Interface(
|
50 |
+
make_inference,
|
51 |
+
gr.inputs.Textbox(lines=2, label="Query"),
|
52 |
+
gr.outputs.Textbox(label="Response"),
|
53 |
+
title="Ask_Wikipedia about Economics",
|
54 |
+
description="️Building a QA application to Wikipedia",
|
55 |
+
).launch()
|