summary / fengshen /models /unimc /modeling_unimc.py
fclong's picture
Upload 396 files
8ebda9e
# coding=utf-8
# Copyright 2021 The IDEA Authors. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from logging import basicConfig
import torch
from torch import nn
import json
from tqdm import tqdm
import os
import numpy as np
from transformers import BertTokenizer
import pytorch_lightning as pl
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning import trainer, loggers
from torch.utils.data import Dataset, DataLoader
from transformers.optimization import get_linear_schedule_with_warmup
from transformers import BertForMaskedLM, AlbertTokenizer
from transformers import AutoConfig
from transformers.pipelines.base import Pipeline
from transformers import MegatronBertForMaskedLM
from fengshen.models.deberta_v2.modeling_deberta_v2 import DebertaV2ForMaskedLM
from fengshen.models.albert.modeling_albert import AlbertForMaskedLM
import argparse
import copy
from fengshen.utils.universal_checkpoint import UniversalCheckpoint
import warnings
from transformers import TextClassificationPipeline as HuggingfacePipe
class UniMCDataset(Dataset):
def __init__(self, data, yes_token, no_token, tokenizer, args, used_mask=True):
super().__init__()
self.tokenizer = tokenizer
self.max_length = args.max_length
self.num_labels = args.num_labels
self.used_mask = used_mask
self.data = data
self.args = args
self.yes_token = yes_token
self.no_token = no_token
def __len__(self):
return len(self.data)
def __getitem__(self, index):
return self.encode(self.data[index], self.used_mask)
def get_token_type(self, sep_idx, max_length):
token_type_ids = np.zeros(shape=(max_length,))
for i in range(len(sep_idx)-1):
if i % 2 == 0:
ty = np.ones(shape=(sep_idx[i+1]-sep_idx[i],))
else:
ty = np.zeros(shape=(sep_idx[i+1]-sep_idx[i],))
token_type_ids[sep_idx[i]:sep_idx[i+1]] = ty
return token_type_ids
def get_position_ids(self, label_idx, max_length, question_len):
question_position_ids = np.arange(question_len)
label_position_ids = np.arange(question_len, label_idx[-1])
for i in range(len(label_idx)-1):
label_position_ids[label_idx[i]-question_len:label_idx[i+1]-question_len] = np.arange(
question_len, question_len+label_idx[i+1]-label_idx[i])
max_len_label = max(label_position_ids)
text_position_ids = np.arange(
max_len_label+1, max_length+max_len_label+1-label_idx[-1])
position_ids = list(question_position_ids) + \
list(label_position_ids)+list(text_position_ids)
if max_length <= 512:
return position_ids[:max_length]
else:
for i in range(512, max_length):
if position_ids[i] > 511:
position_ids[i] = 511
return position_ids[:max_length]
def get_att_mask(self, attention_mask, label_idx, question_len):
max_length = len(attention_mask)
attention_mask = np.array(attention_mask)
attention_mask = np.tile(attention_mask[None, :], (max_length, 1))
zeros = np.zeros(
shape=(label_idx[-1]-question_len, label_idx[-1]-question_len))
attention_mask[question_len:label_idx[-1],
question_len:label_idx[-1]] = zeros
for i in range(len(label_idx)-1):
label_token_length = label_idx[i+1]-label_idx[i]
if label_token_length <= 0:
print('label_idx', label_idx)
print('question_len', question_len)
continue
ones = np.ones(shape=(label_token_length, label_token_length))
attention_mask[label_idx[i]:label_idx[i+1],
label_idx[i]:label_idx[i+1]] = ones
return attention_mask
def random_masking(self, token_ids, maks_rate, mask_start_idx, max_length, mask_id, tokenizer):
rands = np.random.random(len(token_ids))
source, target = [], []
for i, (r, t) in enumerate(zip(rands, token_ids)):
if i < mask_start_idx:
source.append(t)
target.append(-100)
continue
if r < maks_rate * 0.8:
source.append(mask_id)
target.append(t)
elif r < maks_rate * 0.9:
source.append(t)
target.append(t)
elif r < maks_rate:
source.append(np.random.choice(tokenizer.vocab_size - 1) + 1)
target.append(t)
else:
source.append(t)
target.append(-100)
while len(source) < max_length:
source.append(0)
target.append(-100)
return source[:max_length], target[:max_length]
def encode(self, item, used_mask=False):
while len(self.tokenizer.encode('[MASK]'.join(item['choice']))) > self.max_length-32:
item['choice'] = [c[:int(len(c)/2)] for c in item['choice']]
if 'textb' in item.keys() and item['textb'] != '':
if 'question' in item.keys() and item['question'] != '':
texta = '[MASK]' + '[MASK]'.join(item['choice']) + '[SEP]' + \
item['question'] + '[SEP]' + \
item['texta']+'[SEP]'+item['textb']
else:
texta = '[MASK]' + '[MASK]'.join(item['choice']) + '[SEP]' + \
item['texta']+'[SEP]'+item['textb']
else:
if 'question' in item.keys() and item['question'] != '':
texta = '[MASK]' + '[MASK]'.join(item['choice']) + '[SEP]' + \
item['question'] + '[SEP]' + item['texta']
else:
texta = '[MASK]' + '[MASK]'.join(item['choice']) + \
'[SEP]' + item['texta']
encode_dict = self.tokenizer.encode_plus(texta,
max_length=self.max_length,
padding='max_length',
truncation='longest_first')
encode_sent = encode_dict['input_ids']
token_type_ids = encode_dict['token_type_ids']
attention_mask = encode_dict['attention_mask']
sample_max_length = sum(encode_dict['attention_mask'])
if 'label' not in item.keys():
item['label'] = 0
item['answer'] = ''
question_len = 1
label_idx = [question_len]
for choice in item['choice']:
cur_mask_idx = label_idx[-1] + \
len(self.tokenizer.encode(choice, add_special_tokens=False))+1
label_idx.append(cur_mask_idx)
token_type_ids = [0]*question_len+[1] * \
(label_idx[-1]-label_idx[0]+1)+[0]*self.max_length
token_type_ids = token_type_ids[:self.max_length]
attention_mask = self.get_att_mask(
attention_mask, label_idx, question_len)
position_ids = self.get_position_ids(
label_idx, self.max_length, question_len)
clslabels_mask = np.zeros(shape=(len(encode_sent),))
clslabels_mask[label_idx[:-1]] = 10000
clslabels_mask = clslabels_mask-10000
mlmlabels_mask = np.zeros(shape=(len(encode_sent),))
mlmlabels_mask[label_idx[0]] = 1
# used_mask=False
if used_mask:
mask_rate = 0.1*np.random.choice(4, p=[0.3, 0.3, 0.25, 0.15])
source, target = self.random_masking(token_ids=encode_sent, maks_rate=mask_rate,
mask_start_idx=label_idx[-1], max_length=self.max_length,
mask_id=self.tokenizer.mask_token_id, tokenizer=self.tokenizer)
else:
source, target = encode_sent[:], encode_sent[:]
source = np.array(source)
target = np.array(target)
source[label_idx[:-1]] = self.tokenizer.mask_token_id
target[label_idx[:-1]] = self.no_token
target[label_idx[item['label']]] = self.yes_token
input_ids = source[:sample_max_length]
token_type_ids = token_type_ids[:sample_max_length]
attention_mask = attention_mask[:sample_max_length, :sample_max_length]
position_ids = position_ids[:sample_max_length]
mlmlabels = target[:sample_max_length]
clslabels = label_idx[item['label']]
clslabels_mask = clslabels_mask[:sample_max_length]
mlmlabels_mask = mlmlabels_mask[:sample_max_length]
return {
"input_ids": torch.tensor(input_ids).long(),
"token_type_ids": torch.tensor(token_type_ids).long(),
"attention_mask": torch.tensor(attention_mask).float(),
"position_ids": torch.tensor(position_ids).long(),
"mlmlabels": torch.tensor(mlmlabels).long(),
"clslabels": torch.tensor(clslabels).long(),
"clslabels_mask": torch.tensor(clslabels_mask).float(),
"mlmlabels_mask": torch.tensor(mlmlabels_mask).float(),
}
class UniMCDataModel(pl.LightningDataModule):
@staticmethod
def add_data_specific_args(parent_args):
parser = parent_args.add_argument_group('TASK NAME DataModel')
parser.add_argument('--num_workers', default=8, type=int)
parser.add_argument('--batchsize', default=16, type=int)
parser.add_argument('--max_length', default=512, type=int)
return parent_args
def __init__(self, train_data, val_data, yes_token, no_token, tokenizer, args):
super().__init__()
self.batchsize = args.batchsize
self.train_data = UniMCDataset(
train_data, yes_token, no_token, tokenizer, args, True)
self.valid_data = UniMCDataset(
val_data, yes_token, no_token, tokenizer, args, False)
def train_dataloader(self):
return DataLoader(self.train_data, shuffle=True, collate_fn=self.collate_fn, batch_size=self.batchsize, pin_memory=False)
def val_dataloader(self):
return DataLoader(self.valid_data, shuffle=False, collate_fn=self.collate_fn, batch_size=self.batchsize, pin_memory=False)
def collate_fn(self, batch):
'''
Aggregate a batch data.
batch = [ins1_dict, ins2_dict, ..., insN_dict]
batch_data = {'sentence':[ins1_sentence, ins2_sentence...], 'input_ids':[ins1_input_ids, ins2_input_ids...], ...}
'''
batch_data = {}
for key in batch[0]:
batch_data[key] = [example[key] for example in batch]
batch_data['input_ids'] = nn.utils.rnn.pad_sequence(batch_data['input_ids'],
batch_first=True,
padding_value=0)
batch_data['clslabels_mask'] = nn.utils.rnn.pad_sequence(batch_data['clslabels_mask'],
batch_first=True,
padding_value=-10000)
batch_size, batch_max_length = batch_data['input_ids'].shape
for k, v in batch_data.items():
if k == 'input_ids' or k == 'clslabels_mask':
continue
if k == 'clslabels':
batch_data[k] = torch.tensor(v).long()
continue
if k != 'attention_mask':
batch_data[k] = nn.utils.rnn.pad_sequence(v,
batch_first=True,
padding_value=0)
else:
attention_mask = torch.zeros(
(batch_size, batch_max_length, batch_max_length))
for i, att in enumerate(v):
sample_length, _ = att.shape
attention_mask[i, :sample_length, :sample_length] = att
batch_data[k] = attention_mask
return batch_data
class UniMCModel(nn.Module):
def __init__(self, pre_train_dir, yes_token):
super().__init__()
self.config = AutoConfig.from_pretrained(pre_train_dir)
if self.config.model_type == 'megatron-bert':
self.bert = MegatronBertForMaskedLM.from_pretrained(pre_train_dir)
elif self.config.model_type == 'deberta-v2':
self.bert = DebertaV2ForMaskedLM.from_pretrained(pre_train_dir)
elif self.config.model_type == 'albert':
self.bert = AlbertForMaskedLM.from_pretrained(pre_train_dir)
else:
self.bert = BertForMaskedLM.from_pretrained(pre_train_dir)
self.loss_func = torch.nn.CrossEntropyLoss()
self.yes_token = yes_token
def forward(self, input_ids, attention_mask, token_type_ids, position_ids=None, mlmlabels=None, clslabels=None, clslabels_mask=None, mlmlabels_mask=None):
batch_size, seq_len = input_ids.shape
outputs = self.bert(input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
token_type_ids=token_type_ids,
labels=mlmlabels) # (bsz, seq, dim)
mask_loss = outputs.loss
mlm_logits = outputs.logits
cls_logits = mlm_logits[:, :,
self.yes_token].view(-1, seq_len)+clslabels_mask
if mlmlabels == None:
return 0, mlm_logits, cls_logits
else:
cls_loss = self.loss_func(cls_logits, clslabels)
all_loss = mask_loss+cls_loss
return all_loss, mlm_logits, cls_logits
class UniMCLitModel(pl.LightningModule):
@staticmethod
def add_model_specific_args(parent_args):
parser = parent_args.add_argument_group('BaseModel')
parser.add_argument('--learning_rate', default=1e-5, type=float)
parser.add_argument('--weight_decay', default=0.1, type=float)
parser.add_argument('--warmup', default=0.01, type=float)
parser.add_argument('--num_labels', default=2, type=int)
return parent_args
def __init__(self, args, yes_token, model_path, num_data=100):
super().__init__()
self.args = args
self.num_data = num_data
self.model = UniMCModel(model_path, yes_token)
def setup(self, stage) -> None:
if stage == 'fit':
num_gpus = self.trainer.gpus if self.trainer.gpus is not None else 0
self.total_step = int(self.trainer.max_epochs * self.num_data /
(max(1, num_gpus) * self.trainer.accumulate_grad_batches))
print('Total training step:', self.total_step)
def training_step(self, batch, batch_idx):
loss, logits, cls_logits = self.model(**batch)
cls_acc = self.comput_metrix(
cls_logits, batch['clslabels'], batch['mlmlabels_mask'])
self.log('train_loss', loss)
self.log('train_acc', cls_acc)
return loss
def validation_step(self, batch, batch_idx):
loss, logits, cls_logits = self.model(**batch)
cls_acc = self.comput_metrix(
cls_logits, batch['clslabels'], batch['mlmlabels_mask'])
self.log('val_loss', loss)
self.log('val_acc', cls_acc)
def configure_optimizers(self):
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
paras = list(
filter(lambda p: p[1].requires_grad, self.named_parameters()))
paras = [{
'params':
[p for n, p in paras if not any(nd in n for nd in no_decay)],
'weight_decay': self.args.weight_decay
}, {
'params': [p for n, p in paras if any(nd in n for nd in no_decay)],
'weight_decay': 0.0
}]
optimizer = torch.optim.AdamW(paras, lr=self.args.learning_rate)
scheduler = get_linear_schedule_with_warmup(
optimizer, int(self.total_step * self.args.warmup),
self.total_step)
return [{
'optimizer': optimizer,
'lr_scheduler': {
'scheduler': scheduler,
'interval': 'step',
'frequency': 1
}
}]
def comput_metrix(self, logits, labels, mlmlabels_mask):
logits = torch.nn.functional.softmax(logits, dim=-1)
logits = torch.argmax(logits, dim=-1)
y_pred = logits.view(size=(-1,))
y_true = labels.view(size=(-1,))
corr = torch.eq(y_pred, y_true).float()
return torch.sum(corr.float())/labels.size(0)
class UniMCPredict:
def __init__(self, yes_token, no_token, model, tokenizer, args):
self.tokenizer = tokenizer
self.args = args
self.data_model = UniMCDataModel(
[], [], yes_token, no_token, tokenizer, args)
self.model = model
def predict(self, batch_data):
batch = [self.data_model.train_data.encode(
sample) for sample in batch_data]
batch = self.data_model.collate_fn(batch)
batch = {k: v.cuda() for k, v in batch.items()}
_, _, logits = self.model.model(**batch)
soft_logits = torch.nn.functional.softmax(logits, dim=-1)
logits = torch.argmax(soft_logits, dim=-1).detach().cpu().numpy()
soft_logits = soft_logits.detach().cpu().numpy()
clslabels_mask = batch['clslabels_mask'].detach(
).cpu().numpy().tolist()
clslabels = batch['clslabels'].detach().cpu().numpy().tolist()
for i, v in enumerate(batch_data):
label_idx = [idx for idx, v in enumerate(
clslabels_mask[i]) if v == 0.]
label = label_idx.index(logits[i])
answer = batch_data[i]['choice'][label]
score = {}
for c in range(len(batch_data[i]['choice'])):
score[batch_data[i]['choice'][c]] = float(
soft_logits[i][label_idx[c]])
batch_data[i]['label_ori'] = copy.deepcopy(batch_data[i]['label'])
batch_data[i]['label'] = label
batch_data[i]['answer'] = answer
batch_data[i]['score'] = score
return batch_data
class UniMCPipelines(Pipeline):
@staticmethod
def piplines_args(parent_args):
total_parser = parent_args.add_argument_group("piplines args")
total_parser.add_argument(
'--pretrained_model_path', default='', type=str)
total_parser.add_argument('--load_checkpoints_path',
default='', type=str)
total_parser.add_argument('--train', action='store_true')
total_parser.add_argument('--language',
default='chinese', type=str)
total_parser = UniMCDataModel.add_data_specific_args(total_parser)
total_parser = UniversalCheckpoint.add_argparse_args(total_parser)
total_parser = UniMCLitModel.add_model_specific_args(total_parser)
total_parser = pl.Trainer.add_argparse_args(parent_args)
return parent_args
def __init__(self, args, model_path):
self.args = args
self.checkpoint_callback = UniversalCheckpoint(args).callbacks
self.logger = loggers.TensorBoardLogger(save_dir=args.default_root_dir)
self.trainer = pl.Trainer.from_argparse_args(args,
logger=self.logger,
callbacks=[self.checkpoint_callback])
self.config = AutoConfig.from_pretrained(model_path)
if self.config.model_type == 'albert':
self.tokenizer = AlbertTokenizer.from_pretrained(
model_path)
else:
self.tokenizer = BertTokenizer.from_pretrained(
model_path)
if args.language == 'chinese':
self.yes_token = self.tokenizer.encode('是')[1]
self.no_token = self.tokenizer.encode('非')[1]
else:
self.yes_token = self.tokenizer.encode('yes')[1]
self.no_token = self.tokenizer.encode('no')[1]
if args.load_checkpoints_path != '':
self.model = UniMCLitModel.load_from_checkpoint(
args.load_checkpoints_path, args=args, yes_token=self.yes_token, model_path=model_path)
print('load model from: ', args.load_checkpoints_path)
else:
self.model = UniMCLitModel(
args, yes_token=self.yes_token, model_path=model_path)
def train(self, train_data, dev_data, process=True):
if process:
train_data = self.preprocess(train_data)
dev_data = self.preprocess(dev_data)
data_model = UniMCDataModel(
train_data, dev_data, self.yes_token, self.no_token, self.tokenizer, self.args)
self.model.num_data = len(train_data)
self.trainer.fit(self.model, data_model)
def predict(self, test_data, cuda=True, process=True):
if process:
test_data = self.preprocess(test_data)
result = []
start = 0
if cuda:
self.model = self.model.cuda()
self.model.model.eval()
predict_model = UniMCPredict(
self.yes_token, self.no_token, self.model, self.tokenizer, self.args)
while start < len(test_data):
batch_data = test_data[start:start+self.args.batchsize]
start += self.args.batchsize
batch_result = predict_model.predict(batch_data)
result.extend(batch_result)
if process:
result = self.postprocess(result)
return result
def preprocess(self, data):
for i, line in enumerate(data):
if 'task_type' in line.keys() and line['task_type'] == '语义匹配':
data[i]['choice'] = ['不能理解为:'+data[i]
['textb'], '可以理解为:'+data[i]['textb']]
# data[i]['question']='怎么理解这段话?'
data[i]['textb'] = ''
if 'task_type' in line.keys() and line['task_type'] == '自然语言推理':
data[i]['choice'] = ['不能推断出:'+data[i]['textb'],
'很难推断出:'+data[i]['textb'], '可以推断出:'+data[i]['textb']]
# data[i]['question']='根据这段话'
data[i]['textb'] = ''
return data
def postprocess(self, data):
for i, line in enumerate(data):
if 'task_type' in line.keys() and line['task_type'] == '语义匹配':
data[i]['textb'] = data[i]['choice'][0].replace('不能理解为:', '')
data[i]['choice'] = ['不相似', '相似']
ns = {}
for k, v in data[i]['score'].items():
if '不能' in k:
k = '不相似'
if '可以' in k:
k = '相似'
ns[k] = v
data[i]['score'] = ns
data[i]['answer'] = data[i]['choice'][data[i]['label']]
if 'task_type' in line.keys() and line['task_type'] == '自然语言推理':
data[i]['textb'] = data[i]['choice'][0].replace('不能推断出:', '')
data[i]['choice'] = ['矛盾', '自然', '蕴含']
ns = {}
for k, v in data[i]['score'].items():
if '不能' in k:
k = '矛盾'
if '很难' in k:
k = '自然'
if '可以' in k:
k = '蕴含'
ns[k] = v
data[i]['score'] = ns
data[i]['answer'] = data[i]['choice'][data[i]['label']]
return data
def _forward(self, model_inputs):
return self.model(**model_inputs)
def _sanitize_parameters(self, return_all_scores=None, function_to_apply=None, top_k="", **tokenizer_kwargs):
# Using "" as default argument because we're going to use `top_k=None` in user code to declare
# "No top_k"
preprocess_params = tokenizer_kwargs
postprocess_params = {}
if hasattr(self.model.config, "return_all_scores") and return_all_scores is None:
return_all_scores = self.model.config.return_all_scores
if isinstance(top_k, int) or top_k is None:
postprocess_params["top_k"] = top_k
postprocess_params["_legacy"] = False
elif return_all_scores is not None:
warnings.warn(
"`return_all_scores` is now deprecated, if want a similar funcionality use `top_k=None` instead of"
" `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.",
UserWarning,
)
if return_all_scores:
postprocess_params["top_k"] = None
else:
postprocess_params["top_k"] = 1
if function_to_apply is not None:
postprocess_params["function_to_apply"] = function_to_apply
return preprocess_params, {}, postprocess_params
def load_data(data_path):
with open(data_path, 'r', encoding='utf8') as f:
lines = f.readlines()
samples = [json.loads(line) for line in tqdm(lines)]
return samples
def comp_acc(pred_data, test_data):
corr = 0
for i in range(len(pred_data)):
if pred_data[i]['label'] == test_data[i]['label']:
corr += 1
return corr/len(pred_data)
def main():
total_parser = argparse.ArgumentParser("TASK NAME")
total_parser.add_argument('--data_dir', default='./data', type=str)
total_parser.add_argument('--train_data', default='train.json', type=str)
total_parser.add_argument('--valid_data', default='dev.json', type=str)
total_parser.add_argument('--test_data', default='test.json', type=str)
total_parser.add_argument('--output_path', default='', type=str)
total_parser = UniMCPipelines.piplines_args(total_parser)
args = total_parser.parse_args()
train_data = load_data(os.path.join(args.data_dir, args.train_data))
dev_data = load_data(os.path.join(args.data_dir, args.valid_data))
test_data = load_data(os.path.join(args.data_dir, args.test_data))
dev_data_ori = copy.deepcopy(dev_data)
model = UniMCPipelines(args)
print(args.data_dir)
if args.train:
model.train(train_data, dev_data)
result = model.predict(dev_data)
for line in result[:20]:
print(line)
acc = comp_acc(result, dev_data_ori)
print('acc:', acc)
if args.output_path != '':
test_result = model.predict(test_data)
with open(args.output_path, 'w', encoding='utf8') as f:
for line in test_result:
json_data = json.dumps(line, ensure_ascii=False)
f.write(json_data+'\n')
if __name__ == "__main__":
main()