summary / fengshen /examples /translate /finetune_deltalm.sh
fclong's picture
Upload 396 files
8ebda9e
raw
history blame
2.41 kB
#!/bin/bash
#SBATCH --job-name=mbart_en_zh
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=8
#SBATCH --gres=gpu:8 # number of gpus
#SBATCH --cpus-per-task=32
#SBATCH -o %x-%j.log
set -x -e
echo "START TIME: $(date)"
MODEL_NAME=deltalm_en_zh
MICRO_BATCH_SIZE=16
ROOT_DIR=../../workspace
MODEL_ROOT_DIR=$ROOT_DIR/${MODEL_NAME}
if [ ! -d ${MODEL_ROOT_DIR} ];then
mkdir ${MODEL_ROOT_DIR}
echo ${MODEL_ROOT_DIR} created!!!!!!!!!!!!!!
else
echo ${MODEL_ROOT_DIR} exist!!!!!!!!!!!!!!!
fi
output_save_path=${MODEL_ROOT_DIR}.json
if [ -f ${output_save_path} ];then
echo ${output_save_path} exist, rm it!!!!!!!!!!!!!!!!!
rm ${output_save_path}
fi
ZERO_STAGE=1
config_json="${MODEL_ROOT_DIR}/ds_config.${MODEL_NAME}.json"
# Deepspeed figures out GAS dynamically from dynamic GBS via set_train_batch_size()
cat <<EOT > $config_json
{
"train_micro_batch_size_per_gpu": ${MICRO_BATCH_SIZE},
"steps_per_print": 1000,
"gradient_clipping": 1.0,
"zero_optimization": {
"stage": $ZERO_STAGE,
"contiguous_gradients": false
},
"zero_allow_untested_optimizer": false,
"fp16": {
"enabled": true
},
"wall_clock_breakdown": false
}
EOT
export PL_DEEPSPEED_CONFIG_PATH=$config_json
TRAINER_ARGS="
--max_epochs 20 \
--gpus 1 \
--num_nodes 1 \
--strategy deepspeed_stage_${ZERO_STAGE} \
--default_root_dir ${MODEL_ROOT_DIR} \
--save_ckpt_path ${MODEL_ROOT_DIR}/ckpt \
--save_top_k 3 \
--monitor valid_sacrebleu \
--mode max \
--save_last \
--every_n_train_steps 0 \
--val_check_interval 0.2 \
--label_smoothing 0.1 \
--warmup_steps 4000 \
--learning_rate 1e-7 \
--adam_beta2 0.98 \
--scheduler_type inverse_sqrt \
--reverse_src_tgt \
--tgt_zh \
"
DATA_ARGS="
--datasets_name case_test \
--num_workers 8 \
--train_batchsize $MICRO_BATCH_SIZE \
--val_batchsize $MICRO_BATCH_SIZE \
--test_batchsize $MICRO_BATCH_SIZE \
--val_datasets_field val \
--max_enc_length 256 \
--max_dec_length 256 \
"
mode_path="IDEA-CCNL/Randeng-Deltalm-362M-En-Zn"
MODEL_ARGS="
--model_path $mode_path \
--output_save_path $output_save_path \
"
SCRIPTS_PATH=finetune_deltalm.py
cat $SCRIPTS_PATH
export CMD=" \
$SCRIPTS_PATH \
$TRAINER_ARGS \
$MODEL_ARGS \
$DATA_ARGS \
"
echo $CMD
source activate
conda activate fengshen
# srun python3 $CMD
python3 $CMD