sahi-yolox / app.py
Fatih
update deprecated postprocess type
5486933
raw
history blame
9.26 kB
import streamlit as st
import sahi.utils.file
import sahi.utils.mmdet
import sahi.model
from PIL import Image
import random
from utils import sahi_mmdet_inference
from streamlit_image_comparison import image_comparison
MMDET_YOLOX_MODEL_URL = "https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_tiny_8x8_300e_coco/yolox_tiny_8x8_300e_coco_20211124_171234-b4047906.pth"
IMAGE_TO_URL = {
"apple_tree.jpg": "https://user-images.githubusercontent.com/34196005/142730935-2ace3999-a47b-49bb-83e0-2bdd509f1c90.jpg",
"highway.jpg": "https://user-images.githubusercontent.com/34196005/142730936-1b397756-52e5-43be-a949-42ec0134d5d8.jpg",
"highway2.jpg": "https://user-images.githubusercontent.com/34196005/142742871-bf485f84-0355-43a3-be86-96b44e63c3a2.jpg",
"highway3.jpg": "https://user-images.githubusercontent.com/34196005/142742872-1fefcc4d-d7e6-4c43-bbb7-6b5982f7e4ba.jpg",
"highway2-yolox.jpg": "https://user-images.githubusercontent.com/34196005/143309873-c0c1f31c-c42e-4a36-834e-da0a2336bb19.jpg",
"highway2-sahi.jpg": "https://user-images.githubusercontent.com/34196005/143309867-42841f5a-9181-4d22-b570-65f90f2da231.jpg",
}
@st.cache(allow_output_mutation=True, show_spinner=False)
def download_comparison_images():
sahi.utils.file.download_from_url(
"https://user-images.githubusercontent.com/34196005/143309873-c0c1f31c-c42e-4a36-834e-da0a2336bb19.jpg",
"highway2-yolox.jpg",
)
sahi.utils.file.download_from_url(
"https://user-images.githubusercontent.com/34196005/143309867-42841f5a-9181-4d22-b570-65f90f2da231.jpg",
"highway2-sahi.jpg",
)
@st.cache(allow_output_mutation=True, show_spinner=False)
def get_model():
model_path = "yolox.pt"
sahi.utils.file.download_from_url(
MMDET_YOLOX_MODEL_URL,
model_path,
)
config_path = sahi.utils.mmdet.download_mmdet_config(
model_name="yolox", config_file_name="yolox_tiny_8x8_300e_coco.py"
)
detection_model = sahi.model.MmdetDetectionModel(
model_path=model_path,
config_path=config_path,
confidence_threshold=0.5,
device="cpu",
)
return detection_model
class SpinnerTexts:
def __init__(self):
self.ind_history_list = []
self.text_list = [
"Meanwhile check out [MMDetection Colab notebook of SAHI](https://colab.research.google.com/github/obss/sahi/blob/main/demo/inference_for_mmdetection.ipynb)!",
"Meanwhile check out [YOLOv5 Colab notebook of SAHI](https://colab.research.google.com/github/obss/sahi/blob/main/demo/inference_for_yolov5.ipynb)!",
"Meanwhile check out [aerial object detection with SAHI](https://blog.ml6.eu/how-to-detect-small-objects-in-very-large-images-70234bab0f98?gi=b434299595d4)!",
"Meanwhile check out [COCO Utilities of SAHI](https://github.com/obss/sahi/blob/main/docs/COCO.md)!",
"Meanwhile check out [FiftyOne utilities of SAHI](https://github.com/obss/sahi#fiftyone-utilities)!",
"Meanwhile [give a Github star to SAHI](https://github.com/obss/sahi/stargazers)!",
"Meanwhile see [how easy is to install SAHI](https://github.com/obss/sahi#getting-started)!",
"Meanwhile check out [Medium blogpost of SAHI](https://medium.com/codable/sahi-a-vision-library-for-performing-sliced-inference-on-large-images-small-objects-c8b086af3b80)!",
"Meanwhile try out [YOLOv5 HF Spaces demo of SAHI](https://huggingface.co/spaces/fcakyon/sahi-yolov5)!",
]
def _store(self, ind):
if len(self.ind_history_list) == 6:
self.ind_history_list.pop(0)
self.ind_history_list.append(ind)
def get(self):
ind = 0
while ind in self.ind_history_list:
ind = random.randint(0, len(self.text_list) - 1)
self._store(ind)
return self.text_list[ind]
st.set_page_config(
page_title="Small Object Detection with SAHI + YOLOX",
page_icon="πŸš€",
layout="centered",
initial_sidebar_state="auto",
)
download_comparison_images()
if "last_spinner_texts" not in st.session_state:
st.session_state["last_spinner_texts"] = SpinnerTexts()
if "output_1" not in st.session_state:
st.session_state["output_1"] = Image.open("highway2-yolox.jpg")
if "output_2" not in st.session_state:
st.session_state["output_2"] = Image.open("highway2-sahi.jpg")
st.markdown(
"""
<h2 style='text-align: center'>
Small Object Detection <br />
with SAHI + YOLOX
</h2>
""",
unsafe_allow_html=True,
)
st.markdown(
"""
<p style='text-align: center'>
<a href='https://github.com/obss/sahi' target='_blank'>SAHI Github</a> | <a href='https://github.com/open-mmlab/mmdetection/tree/master/configs/yolox' target='_blank'>YOLOX Github</a> | <a href='https://huggingface.co/spaces/fcakyon/sahi-yolov5' target='_blank'>SAHI+YOLOv5 Demo</a>
<br />
Follow me for more! <a href='https://twitter.com/fcakyon' target='_blank'> <img src="https://img.icons8.com/color/48/000000/twitter--v1.png" height="30"></a><a href='https://github.com/fcakyon' target='_blank'><img src="https://img.icons8.com/fluency/48/000000/github.png" height="27"></a><a href='https://www.linkedin.com/in/fcakyon/' target='_blank'><img src="https://img.icons8.com/fluency/48/000000/linkedin.png" height="30"></a> <a href='https://fcakyon.medium.com/' target='_blank'><img src="https://img.icons8.com/ios-filled/48/000000/medium-monogram.png" height="26"></a>
</p>
""",
unsafe_allow_html=True,
)
st.write("##")
with st.expander("Usage"):
st.markdown(
"""
<p>
1. Upload or select the input image πŸ–ΌοΈ
<br />
2. (Optional) Set SAHI parameters βœ”οΈ
<br />
3. Press to "πŸš€ Perform Prediction"
<br />
4. Enjoy sliding image comparison πŸ”₯
</p>
""",
unsafe_allow_html=True,
)
st.write("##")
col1, col2, col3 = st.columns([6, 1, 6])
with col1:
st.markdown(f"##### Set input image:")
# set input image by upload
image_file = st.file_uploader(
"Upload an image to test:", type=["jpg", "jpeg", "png"]
)
# set input image from exapmles
def slider_func(option):
option_to_id = {
"apple_tree.jpg": str(1),
"highway.jpg": str(2),
"highway2.jpg": str(3),
"highway3.jpg": str(4),
}
return option_to_id[option]
slider = st.select_slider(
"Or select from example images:",
options=["apple_tree.jpg", "highway.jpg", "highway2.jpg", "highway3.jpg"],
format_func=slider_func,
value="highway2.jpg",
)
# visualize input image
if image_file is not None:
image = Image.open(image_file)
else:
image = sahi.utils.cv.read_image_as_pil(IMAGE_TO_URL[slider])
st.image(image, width=300)
with col3:
st.markdown(f"##### Set SAHI parameters:")
slice_size = st.number_input("slice_size", min_value=256, value=512, step=256)
overlap_ratio = st.number_input(
"overlap_ratio", min_value=0.0, max_value=0.6, value=0.2, step=0.2
)
postprocess_type = st.selectbox(
"postprocess_type", options=["NMS", "GREEDYNMM"], index=1
)
postprocess_match_metric = st.selectbox(
"postprocess_match_metric", options=["IOU", "IOS"], index=1
)
postprocess_match_threshold = st.number_input(
"postprocess_match_threshold", value=0.5, step=0.1
)
postprocess_class_agnostic = st.checkbox("postprocess_class_agnostic", value=True)
col1, col2, col3 = st.columns([4, 3, 4])
with col2:
submit = st.button("πŸš€ Perform Prediction")
if submit:
# perform prediction
with st.spinner(
text="Downloading model weight.. "
+ st.session_state["last_spinner_texts"].get()
):
detection_model = get_model()
image_size = 416
with st.spinner(
text="Performing prediction.. " + st.session_state["last_spinner_texts"].get()
):
output_1, output_2 = sahi_mmdet_inference(
image,
detection_model,
image_size=image_size,
slice_height=slice_size,
slice_width=slice_size,
overlap_height_ratio=overlap_ratio,
overlap_width_ratio=overlap_ratio,
postprocess_type=postprocess_type,
postprocess_match_metric=postprocess_match_metric,
postprocess_match_threshold=postprocess_match_threshold,
postprocess_class_agnostic=postprocess_class_agnostic,
)
st.session_state["output_1"] = output_1
st.session_state["output_2"] = output_2
st.markdown(f"##### YOLOX Standard vs SAHI Prediction:")
static_component = image_comparison(
img1=st.session_state["output_1"],
img2=st.session_state["output_2"],
label1="YOLOX",
label2="SAHI+YOLOX",
width=700,
starting_position=50,
show_labels=True,
make_responsive=True,
in_memory=True,
)
st.markdown(
"""
<p style='text-align: center'>
prepared with <a href='https://github.com/fcakyon/streamlit-image-comparison' target='_blank'>streamlit-image-comparison</a>
</p>
""",
unsafe_allow_html=True,
)