TC_1024 / gradio_app.py
fbnnb's picture
Update gradio_app.py
e26c456 verified
raw
history blame
13.7 kB
import os, argparse
import sys
import gradio as gr
# from scripts.gradio.i2v_test_application import Image2Video
sys.path.insert(1, os.path.join(sys.path[0], 'lvdm'))
import spaces
import os
import time
from omegaconf import OmegaConf
import torch
from scripts.evaluation.funcs import load_model_checkpoint, save_videos, batch_ddim_sampling, get_latent_z
from utils.utils import instantiate_from_config
from huggingface_hub import hf_hub_download
from einops import repeat
import torchvision.transforms as transforms
from pytorch_lightning import seed_everything
from einops import rearrange
from cldm.model import load_state_dict
import cv2
import torch
print("cuda available:", torch.cuda.is_available())
from huggingface_hub import snapshot_download
import os
def download_model():
REPO_ID = 'fbnnb/TC_sketch'
filename_list = ['tc_sketch.pt']
tar_dir = './checkpoints/tooncrafter_1024_interp_sketch/'
if not os.path.exists(tar_dir):
os.makedirs(tar_dir)
for filename in filename_list:
local_file = os.path.join(tar_dir, filename)
if not os.path.exists(local_file):
hf_hub_download(repo_id=REPO_ID, filename=filename, local_dir=tar_dir, local_dir_use_symlinks=False)
print("downloaded")
def get_latent_z_with_hidden_states(model, videos):
b, c, t, h, w = videos.shape
x = rearrange(videos, 'b c t h w -> (b t) c h w')
encoder_posterior, hidden_states = model.first_stage_model.encode(x, return_hidden_states=True)
hidden_states_first_last = []
### use only the first and last hidden states
for hid in hidden_states:
hid = rearrange(hid, '(b t) c h w -> b c t h w', t=t)
hid_new = torch.cat([hid[:, :, 0:1], hid[:, :, -1:]], dim=2)
hidden_states_first_last.append(hid_new)
z = model.get_first_stage_encoding(encoder_posterior).detach()
z = rearrange(z, '(b t) c h w -> b c t h w', b=b, t=t)
return z, hidden_states_first_last
def extract_frames(video_path):
# 動画フゑむルをθͺ­γΏθΎΌγ‚€
cap = cv2.VideoCapture(video_path)
frame_list = []
frame_num = 0
while True:
# フレームをθͺ­γΏθΎΌγ‚€
ret, frame = cap.read()
if not ret:
break
# フレームをγƒͺγ‚Ήγƒˆγ«θΏ½εŠ 
frame_list.append(frame)
frame_num += 1
print("load video length:", len(frame_list))
# ε‹•η”»γƒ•γ‚‘γ‚€γƒ«γ‚’ι–‰γ˜γ‚‹
cap.release()
return frame_list
resolution = '576_1024'
resolution = (576, 1024)
download_model()
print("after download model")
result_dir = "./results/"
if not os.path.exists(result_dir):
os.mkdir(result_dir)
#ToonCrafterModel
ckpt_path='checkpoints/tooncrafter_1024_interp_sketch/tc_sketch.pt'
config_file='configs/inference_1024_v1.0.yaml'
config = OmegaConf.load(config_file)
model_config = config.pop("model", OmegaConf.create())
model_config['params']['unet_config']['params']['use_checkpoint']=False
model = instantiate_from_config(model_config)
assert os.path.exists(ckpt_path), "Error: checkpoint Not Found!"
model = load_model_checkpoint(model, ckpt_path)
model.eval()
# cn_model.load_state_dict(load_state_dict(cn_ckpt_path, location='cpu'))
# cn_model.eval()
# model.control_model = cn_model
# model_list.append(model)
save_fps = 8
print("resolution:", resolution)
print("init done.")
def transpose_if_needed(tensor):
h = tensor.shape[-2]
w = tensor.shape[-1]
if h > w:
tensor = tensor.permute(0, 2, 1)
return tensor
def untranspose(tensor):
ndim = tensor.ndim
return tensor.transpose(ndim-1, ndim-2)
@spaces.GPU(duration=200)
def get_image(image, sketch, prompt, steps=50, cfg_scale=7.5, eta=1.0, fs=3, seed=123, control_scale=0.6):
print("enter fn")
# control_frames = extract_frames(frame_guides)
print("extract frames")
seed_everything(seed)
transform = transforms.Compose([
transforms.Resize(min(resolution)),
transforms.CenterCrop(resolution),
])
print("before empty cache")
torch.cuda.empty_cache()
print('start:', prompt, time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time())))
start = time.time()
gpu_id=0
if steps > 60:
steps = 60
global model
# model = model_list[gpu_id]
model = model.cuda()
batch_size=1
channels = model.model.diffusion_model.out_channels
frames = model.temporal_length
h, w = resolution[0] // 8, resolution[1] // 8
noise_shape = [batch_size, channels, frames, h, w]
# text cond
transposed = False
with torch.no_grad(), torch.cuda.amp.autocast(dtype=torch.float16):
text_emb = model.get_learned_conditioning([prompt])
print("before control")
#control cond
# if frame_guides is not None:
# cn_videos = []
# for frame in control_frames:
# frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# frame = cv2.bitwise_not(frame)
# cn_tensor = torch.from_numpy(frame).unsqueeze(2).permute(2, 0, 1).float().to(model.device)
# #cn_tensor = (cn_tensor / 255. - 0.5) * 2
# cn_tensor = ( cn_tensor/255.0 )
# cn_tensor = transpose_if_needed(cn_tensor)
# cn_tensor_resized = transform(cn_tensor) #3,h,w
# cn_video = cn_tensor_resized.unsqueeze(0).unsqueeze(2) # bc1hw
# cn_videos.append(cn_video)
# cn_videos = torch.cat(cn_videos, dim=2)
# if cn_videos.shape[2] > frames:
# idxs = []
# for i in range(frames):
# index = int((i + 0.5) * cn_videos.shape[2] / frames)
# idxs.append(min(index, cn_videos.shape[2] - 1))
# cn_videos = cn_videos[:, :, idxs, :, :]
# print("cn_videos.shape after slicing", cn_videos.shape)
# model_list = []
# for model in model_list:
# model.control_scale = control_scale
# model_list.append(model)
# else:
cn_videos = None
print("image cond")
# img cond
img_tensor = torch.from_numpy(image).permute(2, 0, 1).float().to(model.device)
input_h, input_w = img_tensor.shape[1:]
img_tensor = (img_tensor / 255. - 0.5) * 2
img_tensor = transpose_if_needed(img_tensor)
image_tensor_resized = transform(img_tensor) #3,h,w
videos = image_tensor_resized.unsqueeze(0).unsqueeze(2) # bc1hw
print("get latent z")
# z = get_latent_z(model, videos) #bc,1,hw
videos = repeat(videos, 'b c t h w -> b c (repeat t) h w', repeat=frames//2)
if sketch is not None:
img_tensor2 = torch.from_numpy(sketch).permute(2, 0, 1).float().to(model.device)
img_tensor2 = (img_tensor2 / 255. - 0.5) * 2
img_tensor2 = transpose_if_needed(img_tensor2)
image_tensor_resized2 = transform(img_tensor2) #3,h,w
videos2 = image_tensor_resized2.unsqueeze(0).unsqueeze(2) # bchw
videos2 = repeat(videos2, 'b c t h w -> b c (repeat t) h w', repeat=frames//2)
videos = torch.cat([videos, videos2], dim=2)
else:
videos = torch.cat([videos, videos], dim=2)
z, hs = get_latent_z_with_hidden_states(model, videos)
img_tensor_repeat = torch.zeros_like(z)
img_tensor_repeat[:,:,:1,:,:] = z[:,:,:1,:,:]
img_tensor_repeat[:,:,-1:,:,:] = z[:,:,-1:,:,:]
print("image embedder")
cond_images = model.embedder(img_tensor.unsqueeze(0)) ## blc
img_emb = model.image_proj_model(cond_images)
imtext_cond = torch.cat([text_emb, img_emb], dim=1)
fs = torch.tensor([fs], dtype=torch.long, device=model.device)
# print("cn videos:",cn_videos.shape, "img emb:", img_emb.shape)
cond = {"c_crossattn": [imtext_cond], "fs": fs, "c_concat": [img_tensor_repeat], "control_cond": cn_videos}
print("before sample loop")
## inference
batch_samples = batch_ddim_sampling(model, cond, noise_shape, n_samples=1, ddim_steps=steps, ddim_eta=eta, cfg_scale=cfg_scale, hs=hs)
## remove the last frame
# if image2 is None:
batch_samples = batch_samples[:,:,:,:-1,...]
## b,samples,c,t,h,w
prompt_str = prompt.replace("/", "_slash_") if "/" in prompt else prompt
prompt_str = prompt_str.replace(" ", "_") if " " in prompt else prompt_str
prompt_str=prompt_str[:40]
if len(prompt_str) == 0:
prompt_str = 'empty_prompt'
global result_dir
global save_fps
if input_h > input_w:
batch_samples = untranspose(batch_samples)
save_videos(batch_samples, result_dir, filenames=[prompt_str], fps=save_fps)
print(f"Saved in {prompt_str}. Time used: {(time.time() - start):.2f} seconds")
model = model.cpu()
saved_result_dir = os.path.join(result_dir, f"{prompt_str}.mp4")
print("result saved to:", saved_result_dir)
return saved_result_dir
# @spaces.GPU
# i2v_examples_interp_1024 = [
# ['prompts/1024_interp/frame_000000.jpg', 'prompts/1024_interp/frame_000041.jpg', 'a cat is eating', 50, 7.5, 1.0, 10, 123]
# ]
i2v_examples_interp_1024 = [
['prompts/1024_interp/hall_first.jpg', 'prompts/1024_interp/hall_sketch.jpg',
'At the start, a still image of a wooden hallway with arched arches, doors, and various furniture. The scene then transitions to an animated version of the hallway, showcasing more details like a bookshelf and a window.',
50, 7.5, 1.0, 10, 123]
]
def dynamicrafter_demo(result_dir='./tmp/', res=1024):
if res == 1024:
resolution = '576_1024'
css = """#input_img {max-width: 1024px !important} #output_vid {max-width: 1024px; max-height:576px}"""
elif res == 512:
resolution = '320_512'
css = """#input_img {max-width: 512px !important} #output_vid {max-width: 512px; max-height: 320px} #input_img2 {max-width: 512px !important} #output_vid {max-width: 512px; max-height: 320px}"""
elif res == 256:
resolution = '256_256'
css = """#input_img {max-width: 256px !important} #output_vid {max-width: 256px; max-height: 256px}"""
else:
raise NotImplementedError(f"Unsupported resolution: {res}")
# image2video = Image2Video(result_dir, resolution=resolution)
with gr.Blocks(analytics_enabled=False, css=css) as dynamicrafter_iface:
with gr.Tab(label='ToonCrafter_320x512'):
with gr.Column():
with gr.Row():
with gr.Column():
with gr.Row():
i2v_input_image = gr.Image(label="Input Image1",elem_id="input_img")
# frame_guides = gr.Video(label="Input Guidance",elem_id="input_guidance", autoplay=True,show_share_button=True)
with gr.Row():
i2v_input_text = gr.Text(label='Prompts')
with gr.Row():
i2v_seed = gr.Slider(label='Random Seed', minimum=0, maximum=50000, step=1, value=123)
i2v_eta = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, label='ETA', value=1.0, elem_id="i2v_eta")
i2v_cfg_scale = gr.Slider(minimum=1.0, maximum=15.0, step=0.5, label='CFG Scale', value=7.5, elem_id="i2v_cfg_scale")
with gr.Row():
i2v_steps = gr.Slider(minimum=1, maximum=60, step=1, elem_id="i2v_steps", label="Sampling steps", value=50)
i2v_motion = gr.Slider(minimum=5, maximum=30, step=1, elem_id="i2v_motion", label="FPS", value=10)
control_scale = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, elem_id="i2v_ctrl_scale", label="control_scale", value=0.6)
i2v_end_btn = gr.Button("Generate")
with gr.Column():
with gr.Row():
i2v_input_sketch = gr.Image(label="Input End SKetch",elem_id="input_img2")
with gr.Row():
i2v_output_video = gr.Video(label="Generated Video",elem_id="output_vid",autoplay=True,show_share_button=True)
gr.Examples(examples=i2v_examples_interp_1024,
inputs=[i2v_input_image, i2v_input_sketch, i2v_input_text, i2v_steps, i2v_cfg_scale, i2v_eta, i2v_motion, i2v_seed, control_scale],
outputs=[i2v_output_video],
fn = get_image,
cache_examples=False,
)
i2v_end_btn.click(inputs=[i2v_input_image, i2v_input_sketch, i2v_input_text, i2v_steps, i2v_cfg_scale, i2v_eta, i2v_motion, i2v_seed, control_scale],
outputs=[i2v_output_video],
fn = get_image
)
return dynamicrafter_iface
def get_parser():
parser = argparse.ArgumentParser()
return parser
if __name__ == "__main__":
parser = get_parser()
args = parser.parse_args()
result_dir = os.path.join('./', 'results')
dynamicrafter_iface = dynamicrafter_demo(result_dir)
dynamicrafter_iface.queue(max_size=12)
print("launching...")
dynamicrafter_iface.launch(max_threads=1, share=True)
# dynamicrafter_iface.launch(server_name='0.0.0.0', server_port=12345)
# dynamicrafter_iface.launch()
# print("launched...")