Spaces:
Sleeping
Sleeping
#!/usr/bin/env python | |
# -*- coding:utf-8 _*- | |
""" | |
@author:quincy qiang | |
@license: Apache Licence | |
@file: create_knowledge.py | |
@time: 2023/04/18 | |
@contact: yanqiangmiffy@gamil.com | |
@software: PyCharm | |
@description: - emoji:https://emojixd.com/pocket/science | |
""" | |
import os | |
import pandas as pd | |
from langchain.schema import Document | |
from langchain.document_loaders import UnstructuredFileLoader | |
from langchain.embeddings.huggingface import HuggingFaceEmbeddings | |
from langchain.vectorstores import FAISS | |
from tqdm import tqdm | |
# 中文Wikipedia数据导入示例: | |
embedding_model_name = '/root/pretrained_models/text2vec-large-chinese' | |
docs_path = '/root/GoMall/Knowledge-ChatGLM/cache/financial_research_reports' | |
embeddings = HuggingFaceEmbeddings(model_name=embedding_model_name) | |
# Wikipedia数据处理 | |
# docs = [] | |
# with open('docs/zh_wikipedia/zhwiki.sim.utf8', 'r', encoding='utf-8') as f: | |
# for idx, line in tqdm(enumerate(f.readlines())): | |
# metadata = {"source": f'doc_id_{idx}'} | |
# docs.append(Document(page_content=line.strip(), metadata=metadata)) | |
# | |
# vector_store = FAISS.from_documents(docs, embeddings) | |
# vector_store.save_local('cache/zh_wikipedia/') | |
docs = [] | |
with open('cache/zh_wikipedia/wiki.zh-sim-cleaned.txt', 'r', encoding='utf-8') as f: | |
for idx, line in tqdm(enumerate(f.readlines())): | |
metadata = {"source": f'doc_id_{idx}'} | |
docs.append(Document(page_content=line.strip(), metadata=metadata)) | |
vector_store = FAISS.from_documents(docs, embeddings) | |
vector_store.save_local('cache/zh_wikipedia/') | |
# 金融研报数据处理 | |
# docs = [] | |
# | |
# for doc in tqdm(os.listdir(docs_path)): | |
# if doc.endswith('.txt'): | |
# # print(doc) | |
# loader = UnstructuredFileLoader(f'{docs_path}/{doc}', mode="elements") | |
# doc = loader.load() | |
# docs.extend(doc) | |
# vector_store = FAISS.from_documents(docs, embeddings) | |
# vector_store.save_local('cache/financial_research_reports') | |
# 英雄联盟 | |
docs = [] | |
lol_df = pd.read_csv('cache/lol/champions.csv') | |
# lol_df.columns = ['id', '英雄简称', '英雄全称', '出生地', '人物属性', '英雄类别', '英雄故事'] | |
print(lol_df) | |
for idx, row in lol_df.iterrows(): | |
metadata = {"source": f'doc_id_{idx}'} | |
text = ' '.join(row.values) | |
# for col in ['英雄简称', '英雄全称', '出生地', '人物属性', '英雄类别', '英雄故事']: | |
# text += row[col] | |
docs.append(Document(page_content=text, metadata=metadata)) | |
vector_store = FAISS.from_documents(docs, embeddings) | |
vector_store.save_local('cache/lol/') | |