PetroSeg / src /models.py
fazzam's picture
Upload 17 files
e972242 verified
import torch
import torch.nn as nn
import numpy as np
import streamlit as st
import os
from skimage import segmentation
def perform_custom_segmentation(image, params):
class Args(object):
def __init__(self, params):
self.train_epoch = params.get('train_epoch', 2 ** 3)
self.mod_dim1 = params.get('mod_dim1', 64)
self.mod_dim2 = params.get('mod_dim2', 32)
self.gpu_id = params.get('gpu_id', 0)
self.min_label_num = params.get('min_label_num', 6)
self.max_label_num = params.get('max_label_num', 256)
args = Args(params)
class MyNet(nn.Module):
def __init__(self, inp_dim, mod_dim1, mod_dim2):
super(MyNet, self).__init__()
self.seq = nn.Sequential(
nn.Conv2d(inp_dim, mod_dim1, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(mod_dim1),
nn.ReLU(inplace=True),
nn.Conv2d(mod_dim1, mod_dim2, kernel_size=1, stride=1, padding=0),
nn.BatchNorm2d(mod_dim2),
nn.ReLU(inplace=True),
nn.Conv2d(mod_dim2, mod_dim1, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(mod_dim1),
nn.ReLU(inplace=True),
nn.Conv2d(mod_dim1, mod_dim2, kernel_size=1, stride=1, padding=0),
nn.BatchNorm2d(mod_dim2),
)
def forward(self, x):
return self.seq(x)
torch.cuda.manual_seed_all(1943)
np.random.seed(1943)
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu_id)
'''segmentation ML'''
seg_map = segmentation.felzenszwalb(image, scale=15, sigma=0.06, min_size=14)
seg_map = seg_map.flatten()
seg_lab = [np.where(seg_map == u_label)[0]
for u_label in np.unique(seg_map)]
device = torch.device("cuda" if torch.cuda.is_available() else 'cpu')
tensor = image.transpose((2, 0, 1))
tensor = tensor.astype(np.float32) / 255.0
tensor = tensor[np.newaxis, :, :, :]
tensor = torch.from_numpy(tensor).to(device)
model = MyNet(inp_dim=3, mod_dim1=args.mod_dim1, mod_dim2=args.mod_dim2).to(device)
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=5e-2, momentum=0.9)
image_flatten = image.reshape((-1, 3))
color_avg = np.random.randint(255, size=(args.max_label_num, 3))
show = image
progress_bar = st.progress(0)
for batch_idx in range(args.train_epoch):
optimizer.zero_grad()
output = model(tensor)[0]
output = output.permute(1, 2, 0).view(-1, args.mod_dim2)
target = torch.argmax(output, 1)
im_target = target.data.cpu().numpy()
for inds in seg_lab:
u_labels, hist = np.unique(im_target[inds], return_counts=True)
im_target[inds] = u_labels[np.argmax(hist)]
target = torch.from_numpy(im_target)
target = target.to(device)
loss = criterion(output, target)
loss.backward()
optimizer.step()
un_label, lab_inverse = np.unique(im_target, return_inverse=True, )
if un_label.shape[0] < args.max_label_num:
img_flatten = image_flatten.copy()
if len(color_avg) != un_label.shape[0]:
color_avg = [np.mean(img_flatten[im_target == label], axis=0, dtype=int) for label in un_label]
for lab_id, color in enumerate(color_avg):
img_flatten[lab_inverse == lab_id] = color
show = img_flatten.reshape(image.shape)
progress = (batch_idx + 1) / args.train_epoch
progress_bar.progress(progress)
return show