Spaces:
Running
Running
update app
Browse files- .gitattributes +1 -34
- .gitignore +160 -0
- LICENSE +201 -0
- README.md +75 -13
- __init__.py +3 -0
- app.py +110 -0
- env.yml +152 -0
- gitignore +163 -0
- grainsight.log +189 -0
- packages.txt +1 -0
- requirements.txt +16 -0
- setup.py +28 -0
- src/__init__.py +0 -0
- src/__pycache__/__init__.cpython-310.pyc +0 -0
- src/__pycache__/__init__.cpython-311.pyc +0 -0
- src/__pycache__/__init__.cpython-39.pyc +0 -0
- src/__pycache__/segment.cpython-310.pyc +0 -0
- src/__pycache__/ui.cpython-310.pyc +0 -0
- src/model/.gitattributes +1 -0
- src/segmentation/__init__.py +1 -0
- src/segmentation/__pycache__/__init__.cpython-310.pyc +0 -0
- src/segmentation/__pycache__/__init__.cpython-39.pyc +0 -0
- src/segmentation/__pycache__/segment.cpython-310.pyc +0 -0
- src/segmentation/__pycache__/segment.cpython-39.pyc +0 -0
- src/segmentation/segment.py +207 -0
- src/ui/__init__.py +2 -0
- src/ui/__pycache__/__init__.cpython-310.pyc +0 -0
- src/ui/__pycache__/__init__.cpython-311.pyc +0 -0
- src/ui/__pycache__/__init__.cpython-39.pyc +0 -0
- src/ui/__pycache__/drawable_canvas.cpython-310.pyc +0 -0
- src/ui/__pycache__/drawable_canvas.cpython-311.pyc +0 -0
- src/ui/__pycache__/drawable_canvas.cpython-39.pyc +0 -0
- src/ui/__pycache__/streamlit_ui.cpython-310.pyc +0 -0
- src/ui/__pycache__/streamlit_ui.cpython-311.pyc +0 -0
- src/ui/__pycache__/streamlit_ui.cpython-39.pyc +0 -0
- src/ui/drawable_canvas.py +29 -0
- src/ui/streamlit_ui.py +46 -0
- src/utils/__init__.py +3 -0
- src/utils/__pycache__/__init__.cpython-310.pyc +0 -0
- src/utils/__pycache__/__init__.cpython-39.pyc +0 -0
- src/utils/__pycache__/calculations.cpython-310.pyc +0 -0
- src/utils/__pycache__/calculations.cpython-39.pyc +0 -0
- src/utils/__pycache__/load_config.cpython-310.pyc +0 -0
- src/utils/__pycache__/parameters.cpython-310.pyc +0 -0
- src/utils/__pycache__/parameters.cpython-39.pyc +0 -0
- src/utils/__pycache__/visualization.cpython-310.pyc +0 -0
- src/utils/__pycache__/visualization.cpython-39.pyc +0 -0
- src/utils/calculations.py +7 -0
- src/utils/parameters.py +53 -0
- src/utils/visualization.py +28 -0
.gitattributes
CHANGED
@@ -1,35 +1,2 @@
|
|
1 |
-
|
2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
1 |
+
FastSAM-x.pt filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.gitignore
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
share/python-wheels/
|
24 |
+
*.egg-info/
|
25 |
+
.installed.cfg
|
26 |
+
*.egg
|
27 |
+
MANIFEST
|
28 |
+
|
29 |
+
# PyInstaller
|
30 |
+
# Usually these files are written by a python script from a template
|
31 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
32 |
+
*.manifest
|
33 |
+
*.spec
|
34 |
+
|
35 |
+
# Installer logs
|
36 |
+
pip-log.txt
|
37 |
+
pip-delete-this-directory.txt
|
38 |
+
|
39 |
+
# Unit test / coverage reports
|
40 |
+
htmlcov/
|
41 |
+
.tox/
|
42 |
+
.nox/
|
43 |
+
.coverage
|
44 |
+
.coverage.*
|
45 |
+
.cache
|
46 |
+
nosetests.xml
|
47 |
+
coverage.xml
|
48 |
+
*.cover
|
49 |
+
*.py,cover
|
50 |
+
.hypothesis/
|
51 |
+
.pytest_cache/
|
52 |
+
cover/
|
53 |
+
|
54 |
+
# Translations
|
55 |
+
*.mo
|
56 |
+
*.pot
|
57 |
+
|
58 |
+
# Django stuff:
|
59 |
+
*.log
|
60 |
+
local_settings.py
|
61 |
+
db.sqlite3
|
62 |
+
db.sqlite3-journal
|
63 |
+
|
64 |
+
# Flask stuff:
|
65 |
+
instance/
|
66 |
+
.webassets-cache
|
67 |
+
|
68 |
+
# Scrapy stuff:
|
69 |
+
.scrapy
|
70 |
+
|
71 |
+
# Sphinx documentation
|
72 |
+
docs/_build/
|
73 |
+
|
74 |
+
# PyBuilder
|
75 |
+
.pybuilder/
|
76 |
+
target/
|
77 |
+
|
78 |
+
# Jupyter Notebook
|
79 |
+
.ipynb_checkpoints
|
80 |
+
|
81 |
+
# IPython
|
82 |
+
profile_default/
|
83 |
+
ipython_config.py
|
84 |
+
|
85 |
+
# pyenv
|
86 |
+
# For a library or package, you might want to ignore these files since the code is
|
87 |
+
# intended to run in multiple environments; otherwise, check them in:
|
88 |
+
# .python-version
|
89 |
+
|
90 |
+
# pipenv
|
91 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
92 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
93 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
94 |
+
# install all needed dependencies.
|
95 |
+
#Pipfile.lock
|
96 |
+
|
97 |
+
# poetry
|
98 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
99 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
100 |
+
# commonly ignored for libraries.
|
101 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
102 |
+
#poetry.lock
|
103 |
+
|
104 |
+
# pdm
|
105 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
106 |
+
#pdm.lock
|
107 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
108 |
+
# in version control.
|
109 |
+
# https://pdm.fming.dev/#use-with-ide
|
110 |
+
.pdm.toml
|
111 |
+
|
112 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
113 |
+
__pypackages__/
|
114 |
+
|
115 |
+
# Celery stuff
|
116 |
+
celerybeat-schedule
|
117 |
+
celerybeat.pid
|
118 |
+
|
119 |
+
# SageMath parsed files
|
120 |
+
*.sage.py
|
121 |
+
|
122 |
+
# Environments
|
123 |
+
.env
|
124 |
+
.venv
|
125 |
+
env/
|
126 |
+
venv/
|
127 |
+
ENV/
|
128 |
+
env.bak/
|
129 |
+
venv.bak/
|
130 |
+
|
131 |
+
# Spyder project settings
|
132 |
+
.spyderproject
|
133 |
+
.spyproject
|
134 |
+
|
135 |
+
# Rope project settings
|
136 |
+
.ropeproject
|
137 |
+
|
138 |
+
# mkdocs documentation
|
139 |
+
/site
|
140 |
+
|
141 |
+
# mypy
|
142 |
+
.mypy_cache/
|
143 |
+
.dmypy.json
|
144 |
+
dmypy.json
|
145 |
+
|
146 |
+
# Pyre type checker
|
147 |
+
.pyre/
|
148 |
+
|
149 |
+
# pytype static type analyzer
|
150 |
+
.pytype/
|
151 |
+
|
152 |
+
# Cython debug symbols
|
153 |
+
cython_debug/
|
154 |
+
|
155 |
+
# PyCharm
|
156 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
157 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
158 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
159 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
160 |
+
#.idea/
|
LICENSE
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright [yyyy] [name of copyright owner]
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
README.md
CHANGED
@@ -1,13 +1,75 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# GrainSight: README
|
2 |
+
|
3 |
+
GrainSight is a user-friendly application designed for petrographers and microscopists to perform real-time grain segmentation and analysis on microscopic thin section images. Built on top of the powerful FastSAM segmentation model, GrainSight allows you to extract quantitative data and insights from your images, aiding in various petrographic studies.
|
4 |
+
|
5 |
+
## Importance in Petrographic Studies:
|
6 |
+
|
7 |
+
- **Automated Grain Segmentation**: GrainSight eliminates the need for manual grain boundary tracing, saving significant time and effort.
|
8 |
+
- **Quantitative Analysis**: Extract object-specific parameters such as area, perimeter, roundness, aspect ratio, and longest length, enabling quantitative analysis of grain characteristics.
|
9 |
+
- **Mineral Identification and Classification**: The extracted parameters can assist in mineral identification and classification based on their morphological properties.
|
10 |
+
- **Textural Analysis**: Grain size distribution and spatial arrangement of grains can be studied to understand the depositional and diagenetic history of rocks.
|
11 |
+
|
12 |
+
## Installation and Usage:
|
13 |
+
|
14 |
+
### 1. Create a Virtual Environment (Recommended):
|
15 |
+
|
16 |
+
It's recommended to use a virtual environment to manage project-specific dependencies. You can create one using venv or conda:
|
17 |
+
|
18 |
+
```bash
|
19 |
+
# Using venv
|
20 |
+
python3 -m venv grainsight_env
|
21 |
+
|
22 |
+
# Using conda
|
23 |
+
conda create -n grainsight_env python=3.8 # Replace 3.8 with your desired Python version
|
24 |
+
```
|
25 |
+
|
26 |
+
### 2. Activate the Virtual Environment:
|
27 |
+
|
28 |
+
```bash
|
29 |
+
# For venv
|
30 |
+
source grainsight_env/bin/activate # On Linux/macOS
|
31 |
+
grainsight_env\Scripts\activate # On Windows
|
32 |
+
|
33 |
+
# For conda
|
34 |
+
conda activate grainsight_env
|
35 |
+
```
|
36 |
+
|
37 |
+
### 3. Clone the GrainSight Repository:
|
38 |
+
|
39 |
+
```bash
|
40 |
+
git clone https://github.com/fazzam12345/grainsight.git
|
41 |
+
```
|
42 |
+
|
43 |
+
### 4. Install Requirements:
|
44 |
+
|
45 |
+
Install the required libraries from the requirements.txt file:
|
46 |
+
|
47 |
+
```bash
|
48 |
+
pip install -r requirements.txt
|
49 |
+
```
|
50 |
+
|
51 |
+
### 5. Run the Application:
|
52 |
+
|
53 |
+
Start the Streamlit application:
|
54 |
+
|
55 |
+
```bash
|
56 |
+
streamlit run app.py
|
57 |
+
```
|
58 |
+
|
59 |
+
This will open the GrainSight application in your web browser.
|
60 |
+
|
61 |
+
### Usage:
|
62 |
+
|
63 |
+
- **Upload an Image**: Select a microscopic thin section image in JPG, PNG, or JPEG format.
|
64 |
+
- **Set Parameters (Optional)**: Adjust segmentation parameters like input size, IOU threshold, and confidence threshold as needed.
|
65 |
+
- **Draw a Line for Scale**: Draw a line on the image and enter its real-world length (in micrometers) to set the scale for measurements.
|
66 |
+
- **Run Segmentation**: Click the "Run Segmentation" button to segment the image and extract grain parameters.
|
67 |
+
- **Analyze Results**: View the segmented image and the table of calculated grain parameters. You can also download the data as a CSV file.
|
68 |
+
- **Visualize Distributions**: Select a parameter to plot its distribution and gain further insights into grain characteristics.
|
69 |
+
|
70 |
+
### Additional Notes:
|
71 |
+
|
72 |
+
- **Dependencies**: Make sure you have the required versions of Python, PyTorch, Torchvision, and other libraries installed. Refer to the requirements.txt file for details.
|
73 |
+
- **GPU Acceleration**: For faster processing, you can use a CUDA-enabled GPU with the appropriate drivers and PyTorch version.
|
74 |
+
- **Customization**: The code is modular and can be easily extended or customized to suit your specific needs.
|
75 |
+
|
__init__.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
from .src.ui import streamlit_ui, drawable_canvas
|
2 |
+
from .src.segmentation import segment_everything, fast_process
|
3 |
+
from .src.utils import calculate_parameters, plot_distribution, calculate_pixel_length
|
app.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import streamlit as st
|
3 |
+
import logging
|
4 |
+
from PIL import Image
|
5 |
+
from src.ui.drawable_canvas import drawable_canvas
|
6 |
+
from src.ui.streamlit_ui import streamlit_ui
|
7 |
+
from src.segmentation import segment_everything
|
8 |
+
from src.utils import calculate_parameters, plot_distribution, calculate_pixel_length, plot_cumulative_frequency
|
9 |
+
from ultralytics import YOLO
|
10 |
+
import torch
|
11 |
+
import cv2
|
12 |
+
|
13 |
+
logging.basicConfig(filename="grainsight.log", level=logging.INFO)
|
14 |
+
|
15 |
+
# Cache the model and device
|
16 |
+
@st.cache_data()
|
17 |
+
def load_model_and_initialize():
|
18 |
+
model_path = "src\\model\\FastSAM-x.pt"
|
19 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
20 |
+
model = YOLO(model_path)
|
21 |
+
return model, device
|
22 |
+
|
23 |
+
def main():
|
24 |
+
"""Main application logic."""
|
25 |
+
uploaded_image, input_size, iou_threshold, conf_threshold, better_quality, contour_thickness, real_world_length, max_det = streamlit_ui()
|
26 |
+
if uploaded_image is not None:
|
27 |
+
try:
|
28 |
+
canvas_result = drawable_canvas(uploaded_image, input_size)
|
29 |
+
pixel_length = None
|
30 |
+
if canvas_result.json_data is not None and "objects" in canvas_result.json_data:
|
31 |
+
if len(canvas_result.json_data["objects"]) > 0:
|
32 |
+
line_object = canvas_result.json_data["objects"][0]
|
33 |
+
start_point = [line_object['x1'], line_object['y1']]
|
34 |
+
end_point = [line_object['x2'], line_object['y2']]
|
35 |
+
|
36 |
+
# Get image dimensions for calculating the scaling factor
|
37 |
+
image_width, image_height = Image.open(uploaded_image).size
|
38 |
+
scale_factor = input_size / max(image_width, image_height)
|
39 |
+
|
40 |
+
# Calculate pixel length with the scaling factor
|
41 |
+
pixel_length = calculate_pixel_length(start_point, end_point)
|
42 |
+
st.write(f"Pixel length of the line: {pixel_length}")
|
43 |
+
else:
|
44 |
+
st.write("Please draw a line to set the scale or enter the real-world length.")
|
45 |
+
else:
|
46 |
+
st.write("Please draw a line to set the scale or enter the real-world length.")
|
47 |
+
|
48 |
+
if pixel_length is not None and real_world_length is not None:
|
49 |
+
scale_factor = real_world_length / pixel_length
|
50 |
+
else:
|
51 |
+
st.write("Scale factor could not be calculated. Make sure to draw a line and enter the real-world length.")
|
52 |
+
return
|
53 |
+
|
54 |
+
input_image = Image.open(uploaded_image)
|
55 |
+
|
56 |
+
# Load the model and device from cache
|
57 |
+
model, device = load_model_and_initialize()
|
58 |
+
|
59 |
+
segmented_image, annotations = segment_everything(
|
60 |
+
input_image,
|
61 |
+
model=model,
|
62 |
+
device=device,
|
63 |
+
input_size=input_size,
|
64 |
+
iou_threshold=iou_threshold,
|
65 |
+
conf_threshold=conf_threshold,
|
66 |
+
better_quality=better_quality,
|
67 |
+
contour_thickness=contour_thickness,
|
68 |
+
max_det=max_det
|
69 |
+
)
|
70 |
+
|
71 |
+
st.image(segmented_image, caption="Segmented Image", use_column_width=True)
|
72 |
+
|
73 |
+
# Calculate and display object parameters
|
74 |
+
df = calculate_parameters(annotations, scale_factor)
|
75 |
+
|
76 |
+
if not df.empty:
|
77 |
+
st.write("Summary of Object Parameters:")
|
78 |
+
st.dataframe(df)
|
79 |
+
|
80 |
+
csv = df.to_csv(index=False)
|
81 |
+
st.download_button(
|
82 |
+
label="Download data as CSV",
|
83 |
+
data=csv,
|
84 |
+
file_name='grain_parameters.csv',
|
85 |
+
mime='text/csv',
|
86 |
+
)
|
87 |
+
|
88 |
+
plot_cumulative_frequency(df)
|
89 |
+
filtered_columns = [col for col in df.columns.tolist() if col != 'Object']
|
90 |
+
selected_parameter = st.selectbox("Select a parameter to see its distribution:", filtered_columns)
|
91 |
+
|
92 |
+
if selected_parameter:
|
93 |
+
plot_distribution(df, selected_parameter)
|
94 |
+
else:
|
95 |
+
st.write("No parameter selected for plotting.")
|
96 |
+
|
97 |
+
else:
|
98 |
+
st.write("No objects detected.")
|
99 |
+
|
100 |
+
except Exception as e:
|
101 |
+
logging.error(f"An error occurred: {e}")
|
102 |
+
st.error("An error occurred during processing. Please check the logs for details.")
|
103 |
+
|
104 |
+
else:
|
105 |
+
st.write("Please upload an image.")
|
106 |
+
|
107 |
+
if __name__ == "__main__":
|
108 |
+
main()
|
109 |
+
|
110 |
+
|
env.yml
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# environment.yml
|
2 |
+
|
3 |
+
name: c:\Users\fares\Documents\interpreterwithgemini\test_gemini
|
4 |
+
channels:
|
5 |
+
- conda-forge
|
6 |
+
- defaults
|
7 |
+
dependencies:
|
8 |
+
- asttokens=2.4.1=pyhd8ed1ab_0
|
9 |
+
- backcall=0.2.0=pyh9f0ad1d_0
|
10 |
+
- ca-certificates=2024.2.2=h56e8100_0
|
11 |
+
- colorama=0.4.6=pyhd8ed1ab_0
|
12 |
+
- comm=0.2.1=pyhd8ed1ab_0
|
13 |
+
- debugpy=1.6.7=py39hd77b12b_0
|
14 |
+
- decorator=5.1.1=pyhd8ed1ab_0
|
15 |
+
- executing=2.0.1=pyhd8ed1ab_0
|
16 |
+
- importlib-metadata=7.0.1=pyha770c72_0
|
17 |
+
- importlib_metadata=7.0.1=hd8ed1ab_0
|
18 |
+
- ipykernel=6.29.3=pyha63f2e9_0
|
19 |
+
- ipython=8.12.0=pyh08f2357_0
|
20 |
+
- jedi=0.19.1=pyhd8ed1ab_0
|
21 |
+
- jupyter_client=8.6.0=pyhd8ed1ab_0
|
22 |
+
- jupyter_core=4.12.0=py39hcbf5309_0
|
23 |
+
- libsodium=1.0.18=h8d14728_1
|
24 |
+
- matplotlib-inline=0.1.6=pyhd8ed1ab_0
|
25 |
+
- nest-asyncio=1.6.0=pyhd8ed1ab_0
|
26 |
+
- openssl=3.0.13=h2bbff1b_0
|
27 |
+
- packaging=23.2=pyhd8ed1ab_0
|
28 |
+
- parso=0.8.3=pyhd8ed1ab_0
|
29 |
+
- pickleshare=0.7.5=py_1003
|
30 |
+
- pip=23.3.1=py39haa95532_0
|
31 |
+
- prompt-toolkit=3.0.42=pyha770c72_0
|
32 |
+
- prompt_toolkit=3.0.42=hd8ed1ab_0
|
33 |
+
- psutil=5.9.0=py39h2bbff1b_0
|
34 |
+
- pure_eval=0.2.2=pyhd8ed1ab_0
|
35 |
+
- pygments=2.17.2=pyhd8ed1ab_0
|
36 |
+
- python=3.9.18=h1aa4202_0
|
37 |
+
- python-dateutil=2.8.2=pyhd8ed1ab_0
|
38 |
+
- python_abi=3.9=2_cp39
|
39 |
+
- pywin32=227=py39hb82d6ee_1
|
40 |
+
- pyzmq=25.1.2=py39hd77b12b_0
|
41 |
+
- setuptools=68.2.2=py39haa95532_0
|
42 |
+
- six=1.16.0=pyh6c4a22f_0
|
43 |
+
- sqlite=3.41.2=h2bbff1b_0
|
44 |
+
- stack_data=0.6.2=pyhd8ed1ab_0
|
45 |
+
- tornado=6.2=py39hb82d6ee_0
|
46 |
+
- traitlets=5.14.1=pyhd8ed1ab_0
|
47 |
+
- typing_extensions=4.10.0=pyha770c72_0
|
48 |
+
- vc=14.2=h21ff451_1
|
49 |
+
- vs2015_runtime=14.27.29016=h5e58377_2
|
50 |
+
- wcwidth=0.2.13=pyhd8ed1ab_0
|
51 |
+
- wheel=0.41.2=py39haa95532_0
|
52 |
+
- zeromq=4.3.5=hd77b12b_0
|
53 |
+
- zipp=3.17.0=pyhd8ed1ab_0
|
54 |
+
- pip:
|
55 |
+
- aiohttp==3.9.3
|
56 |
+
- aiosignal==1.3.1
|
57 |
+
- altair==5.3.0
|
58 |
+
- async-timeout==4.0.3
|
59 |
+
- attrs==23.2.0
|
60 |
+
- backports-tarfile==1.0.0
|
61 |
+
- blinker==1.7.0
|
62 |
+
- build==1.2.1
|
63 |
+
- cachetools==5.3.3
|
64 |
+
- certifi==2024.2.2
|
65 |
+
- charset-normalizer==3.3.2
|
66 |
+
- click==8.1.7
|
67 |
+
- clip==0.2.0
|
68 |
+
- contourpy==1.2.1
|
69 |
+
- cycler==0.12.1
|
70 |
+
- docutils==0.21.1
|
71 |
+
- filelock==3.13.4
|
72 |
+
- fonttools==4.51.0
|
73 |
+
- frozenlist==1.4.1
|
74 |
+
- fsspec==2024.3.1
|
75 |
+
- genai==2.1.0
|
76 |
+
- gitdb==4.0.11
|
77 |
+
- gitpython==3.1.43
|
78 |
+
- google-ai-generativelanguage==0.4.0
|
79 |
+
- google-api-core==2.17.1
|
80 |
+
- google-auth==2.28.1
|
81 |
+
- google-generativeai==0.3.2
|
82 |
+
- googleapis-common-protos==1.62.0
|
83 |
+
- grpcio==1.62.0
|
84 |
+
- grpcio-status==1.62.0
|
85 |
+
- idna==3.6
|
86 |
+
- importlib-resources==6.4.0
|
87 |
+
- jaraco-classes==3.4.0
|
88 |
+
- jaraco-context==5.3.0
|
89 |
+
- jaraco-functools==4.0.0
|
90 |
+
- jinja2==3.1.3
|
91 |
+
- jsonschema==4.21.1
|
92 |
+
- jsonschema-specifications==2023.12.1
|
93 |
+
- keyring==25.1.0
|
94 |
+
- kiwisolver==1.4.5
|
95 |
+
- markdown-it-py==3.0.0
|
96 |
+
- markupsafe==2.1.5
|
97 |
+
- matplotlib==3.8.4
|
98 |
+
- mdurl==0.1.2
|
99 |
+
- more-itertools==10.2.0
|
100 |
+
- mpmath==1.3.0
|
101 |
+
- multidict==6.0.5
|
102 |
+
- networkx==3.2.1
|
103 |
+
- nh3==0.2.17
|
104 |
+
- numpy==1.26.4
|
105 |
+
- openai==0.27.10
|
106 |
+
- opencv-python==4.9.0.80
|
107 |
+
- pandas==2.2.2
|
108 |
+
- pillow==10.3.0
|
109 |
+
- pkginfo==1.10.0
|
110 |
+
- proto-plus==1.23.0
|
111 |
+
- protobuf==4.25.3
|
112 |
+
- pyarrow==15.0.2
|
113 |
+
- pyasn1==0.5.1
|
114 |
+
- pyasn1-modules==0.3.0
|
115 |
+
- pydeck==0.8.1b0
|
116 |
+
- pyparsing==3.1.2
|
117 |
+
- pyproject-hooks==1.0.0
|
118 |
+
- pytz==2024.1
|
119 |
+
- pywin32-ctypes==0.2.2
|
120 |
+
- pyyaml==6.0.1
|
121 |
+
- readme-renderer==43.0
|
122 |
+
- referencing==0.34.0
|
123 |
+
- regex==2023.12.25
|
124 |
+
- requests==2.31.0
|
125 |
+
- requests-toolbelt==1.0.0
|
126 |
+
- rfc3986==2.0.0
|
127 |
+
- rich==13.7.1
|
128 |
+
- rpds-py==0.18.0
|
129 |
+
- rsa==4.9
|
130 |
+
- scipy==1.13.0
|
131 |
+
- seaborn==0.13.2
|
132 |
+
- smmap==5.0.1
|
133 |
+
- streamlit==1.33.0
|
134 |
+
- streamlit-drawable-canvas==0.9.3
|
135 |
+
- sympy==1.12
|
136 |
+
- tabulate==0.9.0
|
137 |
+
- tenacity==8.2.3
|
138 |
+
- tiktoken==0.3.3
|
139 |
+
- toml==0.10.2
|
140 |
+
- tomli==2.0.1
|
141 |
+
- toolz==0.12.1
|
142 |
+
- torch==2.2.2
|
143 |
+
- torchvision==0.17.2
|
144 |
+
- tqdm==4.66.2
|
145 |
+
- twine==5.0.0
|
146 |
+
- tzdata==2024.1
|
147 |
+
- ultralytics==8.0.120
|
148 |
+
- ultralytics-yolo==0.0.1
|
149 |
+
- urllib3==2.2.1
|
150 |
+
- watchdog==4.0.0
|
151 |
+
- yarl==1.9.4
|
152 |
+
prefix: c:\Users\fares\Documents\interpreterwithgemini\test_gemini
|
gitignore
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# .pt files are produced by PyInstaller
|
10 |
+
*.pt
|
11 |
+
|
12 |
+
# Distribution / packaging
|
13 |
+
.Python
|
14 |
+
build/
|
15 |
+
develop-eggs/
|
16 |
+
dist/
|
17 |
+
downloads/
|
18 |
+
eggs/
|
19 |
+
.eggs/
|
20 |
+
lib/
|
21 |
+
lib64/
|
22 |
+
parts/
|
23 |
+
sdist/
|
24 |
+
var/
|
25 |
+
wheels/
|
26 |
+
share/python-wheels/
|
27 |
+
*.egg-info/
|
28 |
+
.installed.cfg
|
29 |
+
*.egg
|
30 |
+
MANIFEST
|
31 |
+
|
32 |
+
# PyInstaller
|
33 |
+
# Usually these files are written by a python script from a template
|
34 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
35 |
+
*.manifest
|
36 |
+
*.spec
|
37 |
+
|
38 |
+
# Installer logs
|
39 |
+
pip-log.txt
|
40 |
+
pip-delete-this-directory.txt
|
41 |
+
|
42 |
+
# Unit test / coverage reports
|
43 |
+
htmlcov/
|
44 |
+
.tox/
|
45 |
+
.nox/
|
46 |
+
.coverage
|
47 |
+
.coverage.*
|
48 |
+
.cache
|
49 |
+
nosetests.xml
|
50 |
+
coverage.xml
|
51 |
+
*.cover
|
52 |
+
*.py,cover
|
53 |
+
.hypothesis/
|
54 |
+
.pytest_cache/
|
55 |
+
cover/
|
56 |
+
|
57 |
+
# Translations
|
58 |
+
*.mo
|
59 |
+
*.pot
|
60 |
+
|
61 |
+
# Django stuff:
|
62 |
+
*.log
|
63 |
+
local_settings.py
|
64 |
+
db.sqlite3
|
65 |
+
db.sqlite3-journal
|
66 |
+
|
67 |
+
# Flask stuff:
|
68 |
+
instance/
|
69 |
+
.webassets-cache
|
70 |
+
|
71 |
+
# Scrapy stuff:
|
72 |
+
.scrapy
|
73 |
+
|
74 |
+
# Sphinx documentation
|
75 |
+
docs/_build/
|
76 |
+
|
77 |
+
# PyBuilder
|
78 |
+
.pybuilder/
|
79 |
+
target/
|
80 |
+
|
81 |
+
# Jupyter Notebook
|
82 |
+
.ipynb_checkpoints
|
83 |
+
|
84 |
+
# IPython
|
85 |
+
profile_default/
|
86 |
+
ipython_config.py
|
87 |
+
|
88 |
+
# pyenv
|
89 |
+
# For a library or package, you might want to ignore these files since the code is
|
90 |
+
# intended to run in multiple environments; otherwise, check them in:
|
91 |
+
# .python-version
|
92 |
+
|
93 |
+
# pipenv
|
94 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
95 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
96 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
97 |
+
# install all needed dependencies.
|
98 |
+
#Pipfile.lock
|
99 |
+
|
100 |
+
# poetry
|
101 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
102 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
103 |
+
# commonly ignored for libraries.
|
104 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
105 |
+
#poetry.lock
|
106 |
+
|
107 |
+
# pdm
|
108 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
109 |
+
#pdm.lock
|
110 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
111 |
+
# in version control.
|
112 |
+
# https://pdm.fming.dev/#use-with-ide
|
113 |
+
.pdm.toml
|
114 |
+
|
115 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
116 |
+
__pypackages__/
|
117 |
+
|
118 |
+
# Celery stuff
|
119 |
+
celerybeat-schedule
|
120 |
+
celerybeat.pid
|
121 |
+
|
122 |
+
# SageMath parsed files
|
123 |
+
*.sage.py
|
124 |
+
|
125 |
+
# Environments
|
126 |
+
.env
|
127 |
+
.venv
|
128 |
+
env/
|
129 |
+
venv/
|
130 |
+
ENV/
|
131 |
+
env.bak/
|
132 |
+
venv.bak/
|
133 |
+
|
134 |
+
# Spyder project settings
|
135 |
+
.spyderproject
|
136 |
+
.spyproject
|
137 |
+
|
138 |
+
# Rope project settings
|
139 |
+
.ropeproject
|
140 |
+
|
141 |
+
# mkdocs documentation
|
142 |
+
/site
|
143 |
+
|
144 |
+
# mypy
|
145 |
+
.mypy_cache/
|
146 |
+
.dmypy.json
|
147 |
+
dmypy.json
|
148 |
+
|
149 |
+
# Pyre type checker
|
150 |
+
.pyre/
|
151 |
+
|
152 |
+
# pytype static type analyzer
|
153 |
+
.pytype/
|
154 |
+
|
155 |
+
# Cython debug symbols
|
156 |
+
cython_debug/
|
157 |
+
|
158 |
+
# PyCharm
|
159 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
160 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
161 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
162 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
163 |
+
#.idea/
|
grainsight.log
ADDED
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
ERROR:root:An error occurred: name 'model' is not defined
|
2 |
+
ERROR:root:An error occurred: segment_everything() got an unexpected keyword argument 'model'
|
3 |
+
ERROR:root:An error occurred: segment_everything() got an unexpected keyword argument 'model'
|
4 |
+
ERROR:root:An error occurred: segment_everything() got an unexpected keyword argument 'model'
|
5 |
+
ERROR:root:An error occurred: segment_everything() got an unexpected keyword argument 'model'
|
6 |
+
ERROR:root:An error occurred: segment_everything() got an unexpected keyword argument 'model'
|
7 |
+
ERROR:root:An error occurred: segment_everything() got an unexpected keyword argument 'model'
|
8 |
+
ERROR:root:An error occurred: Cannot hash argument 'model' (of type `ultralytics.models.yolo.model.YOLO`) in 'segment_everything'.
|
9 |
+
|
10 |
+
To address this, you can tell Streamlit not to hash this argument by adding a
|
11 |
+
leading underscore to the argument's name in the function signature:
|
12 |
+
|
13 |
+
```
|
14 |
+
@st.cache_data
|
15 |
+
def segment_everything(_model, ...):
|
16 |
+
...
|
17 |
+
```
|
18 |
+
|
19 |
+
ERROR:root:An error occurred: Cannot hash argument 'model' (of type `ultralytics.models.yolo.model.YOLO`) in 'segment_everything'.
|
20 |
+
|
21 |
+
To address this, you can tell Streamlit not to hash this argument by adding a
|
22 |
+
leading underscore to the argument's name in the function signature:
|
23 |
+
|
24 |
+
```
|
25 |
+
@st.cache_resource
|
26 |
+
def segment_everything(_model, ...):
|
27 |
+
...
|
28 |
+
```
|
29 |
+
|
30 |
+
ERROR:root:An error occurred: Cannot hash argument 'annotations' (of type `torch.Tensor`) in 'fast_process'.
|
31 |
+
|
32 |
+
To address this, you can tell Streamlit not to hash this argument by adding a
|
33 |
+
leading underscore to the argument's name in the function signature:
|
34 |
+
|
35 |
+
```
|
36 |
+
@st.cache_resource
|
37 |
+
def fast_process(_annotations, ...):
|
38 |
+
...
|
39 |
+
```
|
40 |
+
|
41 |
+
ERROR:root:An error occurred: tuple index out of range
|
42 |
+
ERROR:root:An error occurred: drawable_canvas() missing 2 required positional arguments: 'annotations' and 'update_segmentation_results'
|
43 |
+
ERROR:root:An error occurred: tuple index out of range
|
44 |
+
ERROR:root:An error occurred: tuple index out of range
|
45 |
+
ERROR:root:An error occurred: tuple index out of range
|
46 |
+
ERROR:root:An error occurred: cannot unpack non-iterable int object
|
47 |
+
ERROR:root:An error occurred: [enforce fail at ..\c10\core\impl\alloc_cpu.cpp:72] data. DefaultCPUAllocator: not enough memory: you tried to allocate 8791780800 bytes.
|
48 |
+
ERROR:root:An error occurred: [enforce fail at ..\c10\core\impl\alloc_cpu.cpp:72] data. DefaultCPUAllocator: not enough memory: you tried to allocate 23004463104 bytes.
|
49 |
+
ERROR:root:An error occurred: [enforce fail at ..\c10\core\impl\alloc_cpu.cpp:72] data. DefaultCPUAllocator: not enough memory: you tried to allocate 4685345280 bytes.
|
50 |
+
ERROR:root:An error occurred: [enforce fail at ..\c10\core\impl\alloc_cpu.cpp:72] data. DefaultCPUAllocator: not enough memory: you tried to allocate 7493472768 bytes.
|
51 |
+
ERROR:root:An error occurred: [enforce fail at ..\c10\core\impl\alloc_cpu.cpp:72] data. DefaultCPUAllocator: not enough memory: you tried to allocate 8282112000 bytes.
|
52 |
+
ERROR:root:An error occurred: tuple index out of range
|
53 |
+
ERROR:root:An error occurred: [enforce fail at ..\c10\core\impl\alloc_cpu.cpp:72] data. DefaultCPUAllocator: not enough memory: you tried to allocate 12423168000 bytes.
|
54 |
+
ERROR:root:An error occurred: tuple index out of range
|
55 |
+
ERROR:root:An error occurred: [enforce fail at ..\c10\core\impl\alloc_cpu.cpp:72] data. DefaultCPUAllocator: not enough memory: you tried to allocate 15366574080 bytes.
|
56 |
+
ERROR:root:An error occurred: [enforce fail at ..\c10\core\impl\alloc_cpu.cpp:72] data. DefaultCPUAllocator: not enough memory: you tried to allocate 10655563776 bytes.
|
57 |
+
ERROR:root:An error occurred: [enforce fail at ..\c10\core\impl\alloc_cpu.cpp:72] data. DefaultCPUAllocator: not enough memory: you tried to allocate 22683435008 bytes.
|
58 |
+
ERROR:root:An error occurred: [enforce fail at ..\c10\core\impl\alloc_cpu.cpp:72] data. DefaultCPUAllocator: not enough memory: you tried to allocate 5753401600 bytes.
|
59 |
+
ERROR:root:An error occurred: [enforce fail at ..\c10\core\impl\alloc_cpu.cpp:72] data. DefaultCPUAllocator: not enough memory: you tried to allocate 20216166400 bytes.
|
60 |
+
ERROR:root:An error occurred: [enforce fail at ..\c10\core\impl\alloc_cpu.cpp:72] data. DefaultCPUAllocator: not enough memory: you tried to allocate 4364006400 bytes.
|
61 |
+
ERROR:root:An error occurred: [enforce fail at ..\c10\core\impl\alloc_cpu.cpp:72] data. DefaultCPUAllocator: not enough memory: you tried to allocate 15180774400 bytes.
|
62 |
+
ERROR:root:An error occurred: [enforce fail at ..\c10\core\impl\alloc_cpu.cpp:72] data. DefaultCPUAllocator: not enough memory: you tried to allocate 25800000000 bytes.
|
63 |
+
ERROR:root:An error occurred: Cannot hash argument 'annotations' (of type `torch.Tensor`) in 'calculate_parameters'.
|
64 |
+
|
65 |
+
To address this, you can tell Streamlit not to hash this argument by adding a
|
66 |
+
leading underscore to the argument's name in the function signature:
|
67 |
+
|
68 |
+
```
|
69 |
+
@st.cache_data
|
70 |
+
def calculate_parameters(_annotations, ...):
|
71 |
+
...
|
72 |
+
```
|
73 |
+
|
74 |
+
ERROR:root:An error occurred: Cannot hash argument 'annotations' (of type `torch.Tensor`) in 'calculate_parameters'.
|
75 |
+
|
76 |
+
To address this, you can tell Streamlit not to hash this argument by adding a
|
77 |
+
leading underscore to the argument's name in the function signature:
|
78 |
+
|
79 |
+
```
|
80 |
+
@st.cache_resource
|
81 |
+
def calculate_parameters(_annotations, ...):
|
82 |
+
...
|
83 |
+
```
|
84 |
+
|
85 |
+
ERROR:root:An error occurred: OpenCV(4.9.0) D:\a\opencv-python\opencv-python\opencv\modules\imgproc\src\color.cpp:196: error: (-215:Assertion failed) !_src.empty() in function 'cv::cvtColor'
|
86 |
+
|
87 |
+
ERROR:root:An error occurred: st_canvas() got an unexpected keyword argument 'background_image_aspect_ratio'
|
88 |
+
ERROR:root:An error occurred: Cannot hash argument 'annotations' (of type `torch.Tensor`) in 'calculate_parameters'.
|
89 |
+
|
90 |
+
To address this, you can tell Streamlit not to hash this argument by adding a
|
91 |
+
leading underscore to the argument's name in the function signature:
|
92 |
+
|
93 |
+
```
|
94 |
+
@st.cache_data
|
95 |
+
def calculate_parameters(_annotations, ...):
|
96 |
+
...
|
97 |
+
```
|
98 |
+
|
99 |
+
ERROR:root:An error occurred: name 'device' is not defined
|
100 |
+
ERROR:root:An error occurred: name 'device' is not defined
|
101 |
+
ERROR:root:An error occurred: 'numpy.ndarray' object has no attribute 'cpu'
|
102 |
+
ERROR:root:An error occurred: 'numpy.ndarray' object has no attribute 'cpu'
|
103 |
+
ERROR:root:An error occurred: 'numpy.ndarray' object has no attribute 'cpu'
|
104 |
+
ERROR:root:An error occurred: 'numpy.ndarray' object has no attribute 'cpu'
|
105 |
+
ERROR:root:An error occurred: 'numpy.ndarray' object has no attribute 'numpy'
|
106 |
+
ERROR:root:An error occurred: 'numpy.ndarray' object has no attribute 'cpu'
|
107 |
+
ERROR:root:An error occurred: Cannot hash argument 'annotations' (of type `torch.Tensor`) in 'calculate_parameters'.
|
108 |
+
|
109 |
+
To address this, you can tell Streamlit not to hash this argument by adding a
|
110 |
+
leading underscore to the argument's name in the function signature:
|
111 |
+
|
112 |
+
```
|
113 |
+
@st.cache_data
|
114 |
+
def calculate_parameters(_annotations, ...):
|
115 |
+
...
|
116 |
+
```
|
117 |
+
|
118 |
+
ERROR:root:An error occurred: Cannot hash argument 'annotations' (of type `torch.Tensor`) in 'calculate_parameters'.
|
119 |
+
|
120 |
+
To address this, you can tell Streamlit not to hash this argument by adding a
|
121 |
+
leading underscore to the argument's name in the function signature:
|
122 |
+
|
123 |
+
```
|
124 |
+
@st.cache_data
|
125 |
+
def calculate_parameters(_annotations, ...):
|
126 |
+
...
|
127 |
+
```
|
128 |
+
|
129 |
+
ERROR:root:An error occurred: Cannot hash argument 'model' (of type `ultralytics.yolo.engine.model.YOLO`) in 'segment_everything'.
|
130 |
+
|
131 |
+
To address this, you can tell Streamlit not to hash this argument by adding a
|
132 |
+
leading underscore to the argument's name in the function signature:
|
133 |
+
|
134 |
+
```
|
135 |
+
@st.cache_data
|
136 |
+
def segment_everything(_model, ...):
|
137 |
+
...
|
138 |
+
```
|
139 |
+
|
140 |
+
ERROR:root:An error occurred: Cannot hash argument 'model' (of type `ultralytics.yolo.engine.model.YOLO`) in 'segment_everything'.
|
141 |
+
|
142 |
+
To address this, you can tell Streamlit not to hash this argument by adding a
|
143 |
+
leading underscore to the argument's name in the function signature:
|
144 |
+
|
145 |
+
```
|
146 |
+
@st.cache_data
|
147 |
+
def segment_everything(_model, ...):
|
148 |
+
...
|
149 |
+
```
|
150 |
+
|
151 |
+
ERROR:root:An error occurred: [enforce fail at alloc_cpu.cpp:114] data. DefaultCPUAllocator: not enough memory: you tried to allocate 27472896000 bytes.
|
152 |
+
ERROR:root:An error occurred: [enforce fail at alloc_cpu.cpp:114] data. DefaultCPUAllocator: not enough memory: you tried to allocate 27472896000 bytes.
|
153 |
+
ERROR:root:An error occurred: cannot unpack non-iterable int object
|
154 |
+
ERROR:root:An error occurred: cannot unpack non-iterable int object
|
155 |
+
ERROR:root:An error occurred: cannot unpack non-iterable int object
|
156 |
+
ERROR:root:An error occurred: cannot unpack non-iterable int object
|
157 |
+
ERROR:root:An error occurred: cannot unpack non-iterable int object
|
158 |
+
ERROR:root:An error occurred: cannot unpack non-iterable int object
|
159 |
+
ERROR:root:An error occurred: cannot unpack non-iterable int object
|
160 |
+
ERROR:root:An error occurred: local variable 'segmented_image' referenced before assignment
|
161 |
+
ERROR:root:An error occurred: local variable 'segmented_image' referenced before assignment
|
162 |
+
ERROR:root:An error occurred: local variable 'segmented_image' referenced before assignment
|
163 |
+
ERROR:root:An error occurred: local variable 'segmented_image' referenced before assignment
|
164 |
+
ERROR:root:An error occurred: local variable 'segmented_image' referenced before assignment
|
165 |
+
ERROR:root:An error occurred: drawable_canvas() missing 1 required positional argument: 'input_size'
|
166 |
+
ERROR:root:An error occurred: drawable_canvas() missing 1 required positional argument: 'input_size'
|
167 |
+
ERROR:root:An error occurred: local variable 'pixel_length' referenced before assignment
|
168 |
+
ERROR:root:An error occurred: Boolean value of Tensor with more than one value is ambiguous
|
169 |
+
ERROR:root:An error occurred: float division by zero
|
170 |
+
ERROR:root:An error occurred: float division by zero
|
171 |
+
ERROR:root:An error occurred: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().
|
172 |
+
ERROR:root:An error occurred: local variable 'feret_diameter_micron' referenced before assignment
|
173 |
+
ERROR:root:An error occurred: name 'min_feret_diameter_micron' is not defined
|
174 |
+
ERROR:root:An error occurred: [enforce fail at alloc_cpu.cpp:114] data. DefaultCPUAllocator: not enough memory: you tried to allocate 29915208704 bytes.
|
175 |
+
ERROR:asyncio:Task exception was never retrieved
|
176 |
+
future: <Task finished name='Task-25015' coro=<WebSocketProtocol13.write_message.<locals>.wrapper() done, defined at c:\Users\fares\Documents\interpreterwithgemini\test_gemini\lib\site-packages\tornado\websocket.py:1090> exception=WebSocketClosedError()>
|
177 |
+
Traceback (most recent call last):
|
178 |
+
File "c:\Users\fares\Documents\interpreterwithgemini\test_gemini\lib\site-packages\tornado\websocket.py", line 1092, in wrapper
|
179 |
+
await fut
|
180 |
+
tornado.iostream.StreamClosedError: Stream is closed
|
181 |
+
|
182 |
+
During handling of the above exception, another exception occurred:
|
183 |
+
|
184 |
+
Traceback (most recent call last):
|
185 |
+
File "c:\Users\fares\Documents\interpreterwithgemini\test_gemini\lib\site-packages\tornado\websocket.py", line 1094, in wrapper
|
186 |
+
raise WebSocketClosedError()
|
187 |
+
tornado.websocket.WebSocketClosedError
|
188 |
+
ERROR:root:An error occurred: [enforce fail at alloc_cpu.cpp:114] data. DefaultCPUAllocator: not enough memory: you tried to allocate 16398000000 bytes.
|
189 |
+
ERROR:root:An error occurred: [enforce fail at alloc_cpu.cpp:114] data. DefaultCPUAllocator: not enough memory: you tried to allocate 39407287296 bytes.
|
packages.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
libgl1
|
requirements.txt
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
matplotlib==3.8.4
|
2 |
+
opencv-python==4.9.0.80
|
3 |
+
Pillow==9.5.0
|
4 |
+
PyYAML==6.0.1
|
5 |
+
requests==2.31.0
|
6 |
+
scipy==1.13.0
|
7 |
+
torch==2.2.2
|
8 |
+
torchvision==0.17.2
|
9 |
+
tqdm==4.66.2
|
10 |
+
pandas==2.2.2
|
11 |
+
seaborn==0.13.2
|
12 |
+
streamlit==1.24.0
|
13 |
+
ultralytics==8.0.120
|
14 |
+
streamlit-drawable-canvas==0.9.3
|
15 |
+
clip==0.2.0
|
16 |
+
ultralytics-yolo==0.0.1
|
setup.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from setuptools import setup, find_packages
|
2 |
+
|
3 |
+
setup(
|
4 |
+
name='Grainsight',
|
5 |
+
version='0.1.0',
|
6 |
+
author='Your Name',
|
7 |
+
author_email='your_email@example.com',
|
8 |
+
description='A Streamlit app for segmenting grains using FastSAM',
|
9 |
+
packages=find_packages(where="src"),
|
10 |
+
install_requires=[
|
11 |
+
'streamlit',
|
12 |
+
'pillow',
|
13 |
+
'ultralytics',
|
14 |
+
'torch',
|
15 |
+
'numpy',
|
16 |
+
'opencv-python',
|
17 |
+
'matplotlib',
|
18 |
+
'pandas',
|
19 |
+
'seaborn',
|
20 |
+
'streamlit-drawable-canvas',
|
21 |
+
'pyyaml'
|
22 |
+
],
|
23 |
+
entry_points={
|
24 |
+
'console_scripts': [
|
25 |
+
'grainsight = grainsight.app:main'
|
26 |
+
]
|
27 |
+
}
|
28 |
+
)
|
src/__init__.py
ADDED
File without changes
|
src/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (162 Bytes). View file
|
|
src/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (178 Bytes). View file
|
|
src/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (160 Bytes). View file
|
|
src/__pycache__/segment.cpython-310.pyc
ADDED
Binary file (7.31 kB). View file
|
|
src/__pycache__/ui.cpython-310.pyc
ADDED
Binary file (2.96 kB). View file
|
|
src/model/.gitattributes
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
src/segmentation/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .segment import segment_everything, fast_process
|
src/segmentation/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (248 Bytes). View file
|
|
src/segmentation/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (246 Bytes). View file
|
|
src/segmentation/__pycache__/segment.cpython-310.pyc
ADDED
Binary file (5.26 kB). View file
|
|
src/segmentation/__pycache__/segment.cpython-39.pyc
ADDED
Binary file (5.23 kB). View file
|
|
src/segmentation/segment.py
ADDED
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from PIL import Image
|
6 |
+
|
7 |
+
|
8 |
+
def segment_everything(_input, model, device, input_size=1024, iou_threshold=0.7, conf_threshold=0.25, better_quality=False, contour_thickness=1, max_det = 500):
|
9 |
+
"""
|
10 |
+
Performs segmentation on the input image and returns the segmented image and annotations.
|
11 |
+
"""
|
12 |
+
|
13 |
+
input_image = _input
|
14 |
+
input_size = int(input_size)
|
15 |
+
w, h = input_image.size
|
16 |
+
scale = input_size / max(w, h)
|
17 |
+
new_w = int(w * scale)
|
18 |
+
new_h = int(h * scale)
|
19 |
+
input_image = input_image.resize((new_w, new_h))
|
20 |
+
|
21 |
+
results = model(input_image,
|
22 |
+
retina_masks=True,
|
23 |
+
iou=iou_threshold,
|
24 |
+
conf=conf_threshold,
|
25 |
+
imgsz=input_size,
|
26 |
+
max_det=max_det)
|
27 |
+
|
28 |
+
annotations = results[0].masks.data
|
29 |
+
segmented_image = fast_process(annotations=annotations,
|
30 |
+
device=device,
|
31 |
+
image=input_image,
|
32 |
+
scale=(1024 // input_size),
|
33 |
+
better_quality=better_quality,
|
34 |
+
contour_thickness=contour_thickness)
|
35 |
+
|
36 |
+
return segmented_image, annotations
|
37 |
+
|
38 |
+
|
39 |
+
def fast_process(annotations,
|
40 |
+
image,
|
41 |
+
device,
|
42 |
+
scale,
|
43 |
+
better_quality=False,
|
44 |
+
mask_random_color=True,
|
45 |
+
bbox=None,
|
46 |
+
use_retina=True,
|
47 |
+
withContours=True,
|
48 |
+
contour_thickness=2):
|
49 |
+
if isinstance(annotations[0], dict):
|
50 |
+
annotations = [annotation['segmentation'] for annotation in annotations]
|
51 |
+
original_h = image.height
|
52 |
+
original_w = image.width
|
53 |
+
if better_quality:
|
54 |
+
if isinstance(annotations[0], torch.Tensor):
|
55 |
+
annotations = np.array(annotations.cpu())
|
56 |
+
for i, mask in enumerate(annotations):
|
57 |
+
mask = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_OPEN, np.ones((3, 3), np.uint8))
|
58 |
+
annotations[i] = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_OPEN, np.ones((8, 8), np.uint8))
|
59 |
+
if device == 'cpu':
|
60 |
+
annotations = np.array(annotations)
|
61 |
+
inner_mask = fast_show_mask(
|
62 |
+
annotations,
|
63 |
+
plt.gca(),
|
64 |
+
random_color=mask_random_color,
|
65 |
+
bbox=bbox,
|
66 |
+
retinamask=use_retina,
|
67 |
+
target_height=original_h,
|
68 |
+
target_width=original_w,
|
69 |
+
)
|
70 |
+
else:
|
71 |
+
if isinstance(annotations[0], np.ndarray):
|
72 |
+
annotations = torch.from_numpy(annotations)
|
73 |
+
inner_mask = fast_show_mask_gpu(
|
74 |
+
annotations,
|
75 |
+
plt.gca(),
|
76 |
+
random_color=mask_random_color,
|
77 |
+
bbox=bbox,
|
78 |
+
retinamask=use_retina,
|
79 |
+
target_height=original_h,
|
80 |
+
target_width=original_w,
|
81 |
+
)
|
82 |
+
if isinstance(annotations, torch.Tensor):
|
83 |
+
annotations = annotations.cpu().numpy()
|
84 |
+
kernel = np.ones((5, 5), np.uint8)
|
85 |
+
if withContours:
|
86 |
+
contour_all = []
|
87 |
+
temp = np.zeros((original_h, original_w, 1))
|
88 |
+
for i, mask in enumerate(annotations):
|
89 |
+
if type(mask) == dict:
|
90 |
+
mask = mask['segmentation']
|
91 |
+
annotation = mask.astype(np.uint8)
|
92 |
+
# Perform morphological operations for separating connected objects and smoothing contours
|
93 |
+
kernel = np.ones((5, 5), np.uint8)
|
94 |
+
annotation = cv2.morphologyEx(annotation, cv2.MORPH_OPEN, kernel)
|
95 |
+
annotation = cv2.GaussianBlur(annotation, (5, 5), 0)
|
96 |
+
# Find contours
|
97 |
+
contours, _ = cv2.findContours(annotation, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
98 |
+
for contour in contours:
|
99 |
+
hull = cv2.convexHull(contour)
|
100 |
+
epsilon = 0.005 * cv2.arcLength(contour, True)
|
101 |
+
approx = cv2.approxPolyDP(contour, epsilon, True)
|
102 |
+
contour_all.append(approx)
|
103 |
+
for i, contour in enumerate(contour_all):
|
104 |
+
M = cv2.moments(contour)
|
105 |
+
if M["m00"] != 0:
|
106 |
+
cX = int(M["m10"] / M["m00"])
|
107 |
+
cY = int(M["m01"] / M["m00"])
|
108 |
+
else:
|
109 |
+
cX, cY = 0, 0
|
110 |
+
cv2.putText(temp, str(i), (cX, cY), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 125, 255), 2)
|
111 |
+
cv2.drawContours(temp, contour_all, -1, (255, 255, 255), contour_thickness)
|
112 |
+
color = np.array([255 / 255, 0 / 255, 0 / 255, 1]) # RGBA
|
113 |
+
contour_mask = temp / 255 * color.reshape(1, 1, -1)
|
114 |
+
image = image.convert('RGBA')
|
115 |
+
overlay_inner = Image.fromarray((inner_mask * 255).astype(np.uint8), 'RGBA')
|
116 |
+
image.paste(overlay_inner, (0, 0), overlay_inner)
|
117 |
+
if withContours:
|
118 |
+
overlay_contour = Image.fromarray((contour_mask * 255).astype(np.uint8), 'RGBA')
|
119 |
+
image.paste(overlay_contour, (0, 0), overlay_contour)
|
120 |
+
return image
|
121 |
+
|
122 |
+
|
123 |
+
# CPU post process
|
124 |
+
def fast_show_mask(
|
125 |
+
annotation,
|
126 |
+
ax,
|
127 |
+
random_color=False,
|
128 |
+
bbox=None,
|
129 |
+
retinamask=True,
|
130 |
+
target_height=960,
|
131 |
+
target_width=960,
|
132 |
+
):
|
133 |
+
mask_sum = annotation.shape[0]
|
134 |
+
height = annotation.shape[1]
|
135 |
+
weight = annotation.shape[2]
|
136 |
+
# Sort annotation by area
|
137 |
+
areas = np.sum(annotation, axis=(1, 2))
|
138 |
+
sorted_indices = np.argsort(areas)[::1]
|
139 |
+
annotation = annotation[sorted_indices]
|
140 |
+
index = (annotation != 0).argmax(axis=0)
|
141 |
+
if random_color:
|
142 |
+
color = np.random.random((mask_sum, 1, 1, 3))
|
143 |
+
else:
|
144 |
+
color = np.ones((mask_sum, 1, 1, 3)) * np.array([30 / 255, 144 / 255, 255 / 255])
|
145 |
+
transparency = np.ones((mask_sum, 1, 1, 1)) * 0.6
|
146 |
+
visual = np.concatenate([color, transparency], axis=-1)
|
147 |
+
mask_image = np.expand_dims(annotation, -1) * visual
|
148 |
+
mask = np.zeros((height, weight, 4))
|
149 |
+
h_indices, w_indices = np.meshgrid(np.arange(height), np.arange(weight), indexing='ij')
|
150 |
+
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
|
151 |
+
mask[h_indices, w_indices, :] = mask_image[indices]
|
152 |
+
if bbox is not None:
|
153 |
+
x1, y1, x2, y2 = bbox
|
154 |
+
ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor='b', linewidth=1))
|
155 |
+
if not retinamask:
|
156 |
+
mask = cv2.resize(mask, (target_width, target_height), interpolation=cv2.INTER_NEAREST)
|
157 |
+
return mask
|
158 |
+
|
159 |
+
|
160 |
+
def fast_show_mask_gpu(
|
161 |
+
annotation,
|
162 |
+
ax,
|
163 |
+
random_color=False,
|
164 |
+
bbox=None,
|
165 |
+
retinamask=True,
|
166 |
+
target_height=960,
|
167 |
+
target_width=960,
|
168 |
+
):
|
169 |
+
device = annotation.device
|
170 |
+
mask_sum = annotation.shape[0]
|
171 |
+
height = annotation.shape[1]
|
172 |
+
weight = annotation.shape[2]
|
173 |
+
areas = torch.sum(annotation, dim=(1, 2))
|
174 |
+
sorted_indices = torch.argsort(areas, descending=False)
|
175 |
+
annotation = annotation[sorted_indices]
|
176 |
+
# Find the first non-zero value index for each position
|
177 |
+
index = (annotation != 0).to(torch.long).argmax(dim=0)
|
178 |
+
if random_color:
|
179 |
+
color = torch.rand((mask_sum, 1, 1, 3)).to(device)
|
180 |
+
else:
|
181 |
+
color = torch.ones((mask_sum, 1, 1, 3)).to(device) * torch.tensor(
|
182 |
+
[30 / 255, 144 / 255, 255 / 255]
|
183 |
+
).to(device)
|
184 |
+
transparency = torch.ones((mask_sum, 1, 1, 1)).to(device) * 0.6
|
185 |
+
visual = torch.cat([color, transparency], dim=-1)
|
186 |
+
mask_image = torch.unsqueeze(annotation, -1) * visual
|
187 |
+
# Use vectorization to get the value of the batch
|
188 |
+
mask = torch.zeros((height, weight, 4)).to(device)
|
189 |
+
h_indices, w_indices = torch.meshgrid(torch.arange(height), torch.arange(weight))
|
190 |
+
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
|
191 |
+
# Use vectorized indexing to update the show values
|
192 |
+
mask[h_indices, w_indices, :] = mask_image[indices]
|
193 |
+
mask_cpu = mask.cpu().numpy()
|
194 |
+
if bbox is not None:
|
195 |
+
x1, y1, x2, y2 = bbox
|
196 |
+
ax.add_patch(
|
197 |
+
plt.Rectangle(
|
198 |
+
(x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor="b", linewidth=1
|
199 |
+
)
|
200 |
+
)
|
201 |
+
if not retinamask:
|
202 |
+
mask_cpu = cv2.resize(
|
203 |
+
mask_cpu, (target_width, target_height), interpolation=cv2.INTER_NEAREST
|
204 |
+
)
|
205 |
+
return mask_cpu
|
206 |
+
|
207 |
+
|
src/ui/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
from .streamlit_ui import streamlit_ui
|
2 |
+
from .drawable_canvas import drawable_canvas
|
src/ui/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (238 Bytes). View file
|
|
src/ui/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (284 Bytes). View file
|
|
src/ui/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (236 Bytes). View file
|
|
src/ui/__pycache__/drawable_canvas.cpython-310.pyc
ADDED
Binary file (773 Bytes). View file
|
|
src/ui/__pycache__/drawable_canvas.cpython-311.pyc
ADDED
Binary file (988 Bytes). View file
|
|
src/ui/__pycache__/drawable_canvas.cpython-39.pyc
ADDED
Binary file (982 Bytes). View file
|
|
src/ui/__pycache__/streamlit_ui.cpython-310.pyc
ADDED
Binary file (1.79 kB). View file
|
|
src/ui/__pycache__/streamlit_ui.cpython-311.pyc
ADDED
Binary file (2.62 kB). View file
|
|
src/ui/__pycache__/streamlit_ui.cpython-39.pyc
ADDED
Binary file (1.79 kB). View file
|
|
src/ui/drawable_canvas.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# src\ui\drawable_canvas.py
|
2 |
+
import streamlit as st
|
3 |
+
from streamlit_drawable_canvas import st_canvas
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
def drawable_canvas(uploaded_image, input_size):
|
7 |
+
"""Creates a Streamlit drawable canvas with the resized image as the background."""
|
8 |
+
# Generate a unique key for the canvas based on the input size
|
9 |
+
canvas_key = f"canvas_{input_size}"
|
10 |
+
|
11 |
+
st.write("Draw a line to set the scale:")
|
12 |
+
original_image = Image.open(uploaded_image)
|
13 |
+
image_width, image_height = original_image.size
|
14 |
+
scale = input_size / max(image_width, image_height)
|
15 |
+
new_w = int(image_width * scale)
|
16 |
+
new_h = int(image_height * scale)
|
17 |
+
resized_image = original_image.resize((new_w, new_h))
|
18 |
+
canvas_result = st_canvas(
|
19 |
+
fill_color="rgba(255, 165, 0, 0.3)",
|
20 |
+
stroke_width=10,
|
21 |
+
stroke_color="#e00",
|
22 |
+
background_image=resized_image,
|
23 |
+
height=new_h,
|
24 |
+
width=new_w,
|
25 |
+
drawing_mode="line",
|
26 |
+
key=canvas_key,
|
27 |
+
)
|
28 |
+
return canvas_result
|
29 |
+
|
src/ui/streamlit_ui.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
def streamlit_ui():
|
4 |
+
"""Creates the Streamlit user interface with input controls."""
|
5 |
+
|
6 |
+
st.sidebar.title("Segmentation Parameters")
|
7 |
+
|
8 |
+
uploaded_image = st.sidebar.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"])
|
9 |
+
|
10 |
+
input_size = st.sidebar.slider(
|
11 |
+
"Input Size", 512, 3000, 1024, 64,
|
12 |
+
help="Size of the input image. Higher values may improve detection but will be slower."
|
13 |
+
)
|
14 |
+
|
15 |
+
iou_threshold = st.sidebar.slider(
|
16 |
+
"IOU Threshold", 0.0, 0.9, 0.7, 0.1,
|
17 |
+
help="Intersection over Union threshold for object detection. Higher values reduce false positives."
|
18 |
+
)
|
19 |
+
|
20 |
+
conf_threshold = st.sidebar.slider(
|
21 |
+
"Confidence Threshold", 0.0, 0.9, 0.5, 0.01,
|
22 |
+
help="Minimum confidence level for detected objects. Lower values may detect more objects but increase false positives."
|
23 |
+
)
|
24 |
+
|
25 |
+
better_quality = st.sidebar.checkbox(
|
26 |
+
"Better Visual Quality", True,
|
27 |
+
help="Check to improve the visual quality of the segmentation. May be slower."
|
28 |
+
)
|
29 |
+
|
30 |
+
contour_thickness = st.sidebar.slider(
|
31 |
+
"Contour Thickness", 1, 50, 1,
|
32 |
+
help="Thickness of the contour lines around detected objects."
|
33 |
+
)
|
34 |
+
|
35 |
+
real_world_length = st.sidebar.number_input(
|
36 |
+
"Enter the real-world length of the line in micrometers:",
|
37 |
+
min_value=1, value=100,
|
38 |
+
help="Length of the reference line in the real world, used for scaling object parameters."
|
39 |
+
)
|
40 |
+
|
41 |
+
max_det = st.sidebar.number_input(
|
42 |
+
"Maximum Number of Detected Objects",
|
43 |
+
min_value=1, value=500,
|
44 |
+
help="Maximum number of detected objects. Higher values may have significant impact on performance."
|
45 |
+
)
|
46 |
+
return uploaded_image, input_size, iou_threshold, conf_threshold, better_quality, contour_thickness, real_world_length, max_det
|
src/utils/__init__.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
from .parameters import calculate_parameters
|
2 |
+
from .visualization import plot_distribution, plot_cumulative_frequency
|
3 |
+
from .calculations import calculate_pixel_length
|
src/utils/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (337 Bytes). View file
|
|
src/utils/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (371 Bytes). View file
|
|
src/utils/__pycache__/calculations.cpython-310.pyc
ADDED
Binary file (441 Bytes). View file
|
|
src/utils/__pycache__/calculations.cpython-39.pyc
ADDED
Binary file (438 Bytes). View file
|
|
src/utils/__pycache__/load_config.cpython-310.pyc
ADDED
Binary file (449 Bytes). View file
|
|
src/utils/__pycache__/parameters.cpython-310.pyc
ADDED
Binary file (1.3 kB). View file
|
|
src/utils/__pycache__/parameters.cpython-39.pyc
ADDED
Binary file (1.56 kB). View file
|
|
src/utils/__pycache__/visualization.cpython-310.pyc
ADDED
Binary file (788 Bytes). View file
|
|
src/utils/__pycache__/visualization.cpython-39.pyc
ADDED
Binary file (1.22 kB). View file
|
|
src/utils/calculations.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
|
3 |
+
def calculate_pixel_length(start_point, end_point):
|
4 |
+
"""Calculates the pixel length of a line."""
|
5 |
+
x1, y1 = start_point
|
6 |
+
x2, y2 = end_point
|
7 |
+
return math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
|
src/utils/parameters.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
import streamlit as st
|
5 |
+
|
6 |
+
def calculate_parameters(annotations, scale_factor):
|
7 |
+
"""Calculates parameters for each segmented object, including Feret diameter."""
|
8 |
+
df = pd.DataFrame(columns=['Object', 'Area', 'Perimeter', 'Roundness',
|
9 |
+
'Aspect Ratio (Elongation)', 'Longest Feret Diameter'])
|
10 |
+
if len(annotations) > 0:
|
11 |
+
for i, mask in enumerate(annotations):
|
12 |
+
binary_mask = mask.cpu().numpy().astype(np.uint8)
|
13 |
+
area_pixel = np.sum(binary_mask)
|
14 |
+
area_micron = area_pixel * (scale_factor ** 2)
|
15 |
+
|
16 |
+
# Find contours with all points (no approximation)
|
17 |
+
contours, _ = cv2.findContours(binary_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
|
18 |
+
|
19 |
+
if contours: # Check if any contours were found
|
20 |
+
perimeter_pixel = cv2.arcLength(contours[0], True)
|
21 |
+
perimeter_micron = perimeter_pixel * scale_factor
|
22 |
+
|
23 |
+
# Fit ellipse for roundness and aspect ratio (check for sufficient points)
|
24 |
+
if len(contours[0]) >= 5:
|
25 |
+
ellipse = cv2.fitEllipse(contours[0])
|
26 |
+
major_axis, minor_axis = ellipse[1]
|
27 |
+
else:
|
28 |
+
major_axis = minor_axis = 0
|
29 |
+
|
30 |
+
major_axis_micron = major_axis * scale_factor
|
31 |
+
minor_axis_micron = minor_axis * scale_factor
|
32 |
+
roundness = (4 * np.pi * area_micron) / (perimeter_micron ** 2)
|
33 |
+
aspect_ratio = major_axis_micron / minor_axis_micron if minor_axis_micron != 0 else "Undefined"
|
34 |
+
|
35 |
+
# Calculate Feret diameter and Elongation
|
36 |
+
hull = cv2.convexHull(contours[0])
|
37 |
+
distances = np.linalg.norm(hull - hull[:, 0, :], axis=2)
|
38 |
+
max_feret_diameter_micron = np.max(distances) * scale_factor
|
39 |
+
|
40 |
+
new_row = pd.DataFrame({
|
41 |
+
'Object': [f"Object {i}"],
|
42 |
+
'Area': [area_micron],
|
43 |
+
'Perimeter': [perimeter_micron],
|
44 |
+
'Roundness': [roundness],
|
45 |
+
'Aspect Ratio (Elongation)': [aspect_ratio],
|
46 |
+
'Longest Feret Diameter': [max_feret_diameter_micron],
|
47 |
+
})
|
48 |
+
df = pd.concat([df, new_row], ignore_index=True)
|
49 |
+
|
50 |
+
# Eliminate artifacts with undefined parameters
|
51 |
+
df = df[(df['Longest Feret Diameter'] != 0) & (df['Roundness'] >= 0) & (df['Roundness'] <= 1)]
|
52 |
+
|
53 |
+
return df
|
src/utils/visualization.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import seaborn as sns
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
import streamlit as st
|
4 |
+
|
5 |
+
def plot_distribution(df, selected_parameter):
|
6 |
+
"""Plots the distribution of a selected parameter."""
|
7 |
+
|
8 |
+
try:
|
9 |
+
fig, ax = plt.subplots()
|
10 |
+
sns.histplot(df[selected_parameter], kde=True, ax=ax)
|
11 |
+
ax.set_title(f'Distribution of {selected_parameter}')
|
12 |
+
ax.set_xlabel(selected_parameter)
|
13 |
+
ax.set_ylabel('Frequency')
|
14 |
+
st.pyplot(fig)
|
15 |
+
except Exception as e:
|
16 |
+
st.write(f"An error occurred while plotting: {e}")
|
17 |
+
|
18 |
+
def plot_cumulative_frequency(df):
|
19 |
+
try:
|
20 |
+
fig, ax = plt.subplots()
|
21 |
+
sns.ecdfplot(df['Longest Feret Diameter'], ax=ax)
|
22 |
+
ax.set_title(f'Cumulative Frequency Plot')
|
23 |
+
ax.set_xlabel('Grains diameter')
|
24 |
+
ax.set_ylabel('Cumulative Frequency')
|
25 |
+
st.pyplot(fig)
|
26 |
+
except Exception as e:
|
27 |
+
st.write(f"An error occurred while plotting: {e}")
|
28 |
+
|