fazzam commited on
Commit
8b35f7e
·
verified ·
1 Parent(s): 3fa15ec

Update grainsight.log

Browse files
Files changed (1) hide show
  1. grainsight.log +0 -189
grainsight.log CHANGED
@@ -1,189 +0,0 @@
1
- ERROR:root:An error occurred: name 'model' is not defined
2
- ERROR:root:An error occurred: segment_everything() got an unexpected keyword argument 'model'
3
- ERROR:root:An error occurred: segment_everything() got an unexpected keyword argument 'model'
4
- ERROR:root:An error occurred: segment_everything() got an unexpected keyword argument 'model'
5
- ERROR:root:An error occurred: segment_everything() got an unexpected keyword argument 'model'
6
- ERROR:root:An error occurred: segment_everything() got an unexpected keyword argument 'model'
7
- ERROR:root:An error occurred: segment_everything() got an unexpected keyword argument 'model'
8
- ERROR:root:An error occurred: Cannot hash argument 'model' (of type `ultralytics.models.yolo.model.YOLO`) in 'segment_everything'.
9
-
10
- To address this, you can tell Streamlit not to hash this argument by adding a
11
- leading underscore to the argument's name in the function signature:
12
-
13
- ```
14
- @st.cache_data
15
- def segment_everything(_model, ...):
16
- ...
17
- ```
18
-
19
- ERROR:root:An error occurred: Cannot hash argument 'model' (of type `ultralytics.models.yolo.model.YOLO`) in 'segment_everything'.
20
-
21
- To address this, you can tell Streamlit not to hash this argument by adding a
22
- leading underscore to the argument's name in the function signature:
23
-
24
- ```
25
- @st.cache_resource
26
- def segment_everything(_model, ...):
27
- ...
28
- ```
29
-
30
- ERROR:root:An error occurred: Cannot hash argument 'annotations' (of type `torch.Tensor`) in 'fast_process'.
31
-
32
- To address this, you can tell Streamlit not to hash this argument by adding a
33
- leading underscore to the argument's name in the function signature:
34
-
35
- ```
36
- @st.cache_resource
37
- def fast_process(_annotations, ...):
38
- ...
39
- ```
40
-
41
- ERROR:root:An error occurred: tuple index out of range
42
- ERROR:root:An error occurred: drawable_canvas() missing 2 required positional arguments: 'annotations' and 'update_segmentation_results'
43
- ERROR:root:An error occurred: tuple index out of range
44
- ERROR:root:An error occurred: tuple index out of range
45
- ERROR:root:An error occurred: tuple index out of range
46
- ERROR:root:An error occurred: cannot unpack non-iterable int object
47
- ERROR:root:An error occurred: [enforce fail at ..\c10\core\impl\alloc_cpu.cpp:72] data. DefaultCPUAllocator: not enough memory: you tried to allocate 8791780800 bytes.
48
- ERROR:root:An error occurred: [enforce fail at ..\c10\core\impl\alloc_cpu.cpp:72] data. DefaultCPUAllocator: not enough memory: you tried to allocate 23004463104 bytes.
49
- ERROR:root:An error occurred: [enforce fail at ..\c10\core\impl\alloc_cpu.cpp:72] data. DefaultCPUAllocator: not enough memory: you tried to allocate 4685345280 bytes.
50
- ERROR:root:An error occurred: [enforce fail at ..\c10\core\impl\alloc_cpu.cpp:72] data. DefaultCPUAllocator: not enough memory: you tried to allocate 7493472768 bytes.
51
- ERROR:root:An error occurred: [enforce fail at ..\c10\core\impl\alloc_cpu.cpp:72] data. DefaultCPUAllocator: not enough memory: you tried to allocate 8282112000 bytes.
52
- ERROR:root:An error occurred: tuple index out of range
53
- ERROR:root:An error occurred: [enforce fail at ..\c10\core\impl\alloc_cpu.cpp:72] data. DefaultCPUAllocator: not enough memory: you tried to allocate 12423168000 bytes.
54
- ERROR:root:An error occurred: tuple index out of range
55
- ERROR:root:An error occurred: [enforce fail at ..\c10\core\impl\alloc_cpu.cpp:72] data. DefaultCPUAllocator: not enough memory: you tried to allocate 15366574080 bytes.
56
- ERROR:root:An error occurred: [enforce fail at ..\c10\core\impl\alloc_cpu.cpp:72] data. DefaultCPUAllocator: not enough memory: you tried to allocate 10655563776 bytes.
57
- ERROR:root:An error occurred: [enforce fail at ..\c10\core\impl\alloc_cpu.cpp:72] data. DefaultCPUAllocator: not enough memory: you tried to allocate 22683435008 bytes.
58
- ERROR:root:An error occurred: [enforce fail at ..\c10\core\impl\alloc_cpu.cpp:72] data. DefaultCPUAllocator: not enough memory: you tried to allocate 5753401600 bytes.
59
- ERROR:root:An error occurred: [enforce fail at ..\c10\core\impl\alloc_cpu.cpp:72] data. DefaultCPUAllocator: not enough memory: you tried to allocate 20216166400 bytes.
60
- ERROR:root:An error occurred: [enforce fail at ..\c10\core\impl\alloc_cpu.cpp:72] data. DefaultCPUAllocator: not enough memory: you tried to allocate 4364006400 bytes.
61
- ERROR:root:An error occurred: [enforce fail at ..\c10\core\impl\alloc_cpu.cpp:72] data. DefaultCPUAllocator: not enough memory: you tried to allocate 15180774400 bytes.
62
- ERROR:root:An error occurred: [enforce fail at ..\c10\core\impl\alloc_cpu.cpp:72] data. DefaultCPUAllocator: not enough memory: you tried to allocate 25800000000 bytes.
63
- ERROR:root:An error occurred: Cannot hash argument 'annotations' (of type `torch.Tensor`) in 'calculate_parameters'.
64
-
65
- To address this, you can tell Streamlit not to hash this argument by adding a
66
- leading underscore to the argument's name in the function signature:
67
-
68
- ```
69
- @st.cache_data
70
- def calculate_parameters(_annotations, ...):
71
- ...
72
- ```
73
-
74
- ERROR:root:An error occurred: Cannot hash argument 'annotations' (of type `torch.Tensor`) in 'calculate_parameters'.
75
-
76
- To address this, you can tell Streamlit not to hash this argument by adding a
77
- leading underscore to the argument's name in the function signature:
78
-
79
- ```
80
- @st.cache_resource
81
- def calculate_parameters(_annotations, ...):
82
- ...
83
- ```
84
-
85
- ERROR:root:An error occurred: OpenCV(4.9.0) D:\a\opencv-python\opencv-python\opencv\modules\imgproc\src\color.cpp:196: error: (-215:Assertion failed) !_src.empty() in function 'cv::cvtColor'
86
-
87
- ERROR:root:An error occurred: st_canvas() got an unexpected keyword argument 'background_image_aspect_ratio'
88
- ERROR:root:An error occurred: Cannot hash argument 'annotations' (of type `torch.Tensor`) in 'calculate_parameters'.
89
-
90
- To address this, you can tell Streamlit not to hash this argument by adding a
91
- leading underscore to the argument's name in the function signature:
92
-
93
- ```
94
- @st.cache_data
95
- def calculate_parameters(_annotations, ...):
96
- ...
97
- ```
98
-
99
- ERROR:root:An error occurred: name 'device' is not defined
100
- ERROR:root:An error occurred: name 'device' is not defined
101
- ERROR:root:An error occurred: 'numpy.ndarray' object has no attribute 'cpu'
102
- ERROR:root:An error occurred: 'numpy.ndarray' object has no attribute 'cpu'
103
- ERROR:root:An error occurred: 'numpy.ndarray' object has no attribute 'cpu'
104
- ERROR:root:An error occurred: 'numpy.ndarray' object has no attribute 'cpu'
105
- ERROR:root:An error occurred: 'numpy.ndarray' object has no attribute 'numpy'
106
- ERROR:root:An error occurred: 'numpy.ndarray' object has no attribute 'cpu'
107
- ERROR:root:An error occurred: Cannot hash argument 'annotations' (of type `torch.Tensor`) in 'calculate_parameters'.
108
-
109
- To address this, you can tell Streamlit not to hash this argument by adding a
110
- leading underscore to the argument's name in the function signature:
111
-
112
- ```
113
- @st.cache_data
114
- def calculate_parameters(_annotations, ...):
115
- ...
116
- ```
117
-
118
- ERROR:root:An error occurred: Cannot hash argument 'annotations' (of type `torch.Tensor`) in 'calculate_parameters'.
119
-
120
- To address this, you can tell Streamlit not to hash this argument by adding a
121
- leading underscore to the argument's name in the function signature:
122
-
123
- ```
124
- @st.cache_data
125
- def calculate_parameters(_annotations, ...):
126
- ...
127
- ```
128
-
129
- ERROR:root:An error occurred: Cannot hash argument 'model' (of type `ultralytics.yolo.engine.model.YOLO`) in 'segment_everything'.
130
-
131
- To address this, you can tell Streamlit not to hash this argument by adding a
132
- leading underscore to the argument's name in the function signature:
133
-
134
- ```
135
- @st.cache_data
136
- def segment_everything(_model, ...):
137
- ...
138
- ```
139
-
140
- ERROR:root:An error occurred: Cannot hash argument 'model' (of type `ultralytics.yolo.engine.model.YOLO`) in 'segment_everything'.
141
-
142
- To address this, you can tell Streamlit not to hash this argument by adding a
143
- leading underscore to the argument's name in the function signature:
144
-
145
- ```
146
- @st.cache_data
147
- def segment_everything(_model, ...):
148
- ...
149
- ```
150
-
151
- ERROR:root:An error occurred: [enforce fail at alloc_cpu.cpp:114] data. DefaultCPUAllocator: not enough memory: you tried to allocate 27472896000 bytes.
152
- ERROR:root:An error occurred: [enforce fail at alloc_cpu.cpp:114] data. DefaultCPUAllocator: not enough memory: you tried to allocate 27472896000 bytes.
153
- ERROR:root:An error occurred: cannot unpack non-iterable int object
154
- ERROR:root:An error occurred: cannot unpack non-iterable int object
155
- ERROR:root:An error occurred: cannot unpack non-iterable int object
156
- ERROR:root:An error occurred: cannot unpack non-iterable int object
157
- ERROR:root:An error occurred: cannot unpack non-iterable int object
158
- ERROR:root:An error occurred: cannot unpack non-iterable int object
159
- ERROR:root:An error occurred: cannot unpack non-iterable int object
160
- ERROR:root:An error occurred: local variable 'segmented_image' referenced before assignment
161
- ERROR:root:An error occurred: local variable 'segmented_image' referenced before assignment
162
- ERROR:root:An error occurred: local variable 'segmented_image' referenced before assignment
163
- ERROR:root:An error occurred: local variable 'segmented_image' referenced before assignment
164
- ERROR:root:An error occurred: local variable 'segmented_image' referenced before assignment
165
- ERROR:root:An error occurred: drawable_canvas() missing 1 required positional argument: 'input_size'
166
- ERROR:root:An error occurred: drawable_canvas() missing 1 required positional argument: 'input_size'
167
- ERROR:root:An error occurred: local variable 'pixel_length' referenced before assignment
168
- ERROR:root:An error occurred: Boolean value of Tensor with more than one value is ambiguous
169
- ERROR:root:An error occurred: float division by zero
170
- ERROR:root:An error occurred: float division by zero
171
- ERROR:root:An error occurred: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().
172
- ERROR:root:An error occurred: local variable 'feret_diameter_micron' referenced before assignment
173
- ERROR:root:An error occurred: name 'min_feret_diameter_micron' is not defined
174
- ERROR:root:An error occurred: [enforce fail at alloc_cpu.cpp:114] data. DefaultCPUAllocator: not enough memory: you tried to allocate 29915208704 bytes.
175
- ERROR:asyncio:Task exception was never retrieved
176
- future: <Task finished name='Task-25015' coro=<WebSocketProtocol13.write_message.<locals>.wrapper() done, defined at c:\Users\fares\Documents\interpreterwithgemini\test_gemini\lib\site-packages\tornado\websocket.py:1090> exception=WebSocketClosedError()>
177
- Traceback (most recent call last):
178
- File "c:\Users\fares\Documents\interpreterwithgemini\test_gemini\lib\site-packages\tornado\websocket.py", line 1092, in wrapper
179
- await fut
180
- tornado.iostream.StreamClosedError: Stream is closed
181
-
182
- During handling of the above exception, another exception occurred:
183
-
184
- Traceback (most recent call last):
185
- File "c:\Users\fares\Documents\interpreterwithgemini\test_gemini\lib\site-packages\tornado\websocket.py", line 1094, in wrapper
186
- raise WebSocketClosedError()
187
- tornado.websocket.WebSocketClosedError
188
- ERROR:root:An error occurred: [enforce fail at alloc_cpu.cpp:114] data. DefaultCPUAllocator: not enough memory: you tried to allocate 16398000000 bytes.
189
- ERROR:root:An error occurred: [enforce fail at alloc_cpu.cpp:114] data. DefaultCPUAllocator: not enough memory: you tried to allocate 39407287296 bytes.