added app.py file with all other files
Browse files- FindKeyword.py +11 -0
- PreprocessText.py +28 -0
- app.py +243 -0
- htmlTemplates.py +44 -0
- model_Responce.py +38 -0
- models/model.h5 +3 -0
- requirements.txt +17 -0
FindKeyword.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
def FindKeyWords(keywords, text):
|
3 |
+
highlighted_text = text
|
4 |
+
|
5 |
+
for keyword in keywords:
|
6 |
+
if re.search(r'\b({0})\b'.format(re.escape(keyword)), highlighted_text, flags=re.IGNORECASE):
|
7 |
+
highlighted_text = re.sub(r'\b({0})\b'.format(re.escape(keyword)), r'<mark style="background-color: yellow;">\1</mark>', highlighted_text, flags=re.IGNORECASE)
|
8 |
+
else:
|
9 |
+
return "Keyword not found in the Resume."
|
10 |
+
|
11 |
+
return highlighted_text
|
PreprocessText.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
|
3 |
+
def preprocess_text(text):
|
4 |
+
# Remove newlines and tabs
|
5 |
+
text = re.sub(r'\n|\t', '', text)
|
6 |
+
|
7 |
+
# Remove letter combinations between spaces
|
8 |
+
text = re.sub(r'\s[A-Z]\s', ' ', text)
|
9 |
+
|
10 |
+
# Remove emails
|
11 |
+
text = re.sub(r'\S+@\S+', '', text)
|
12 |
+
|
13 |
+
# Remove dates in the format DD-MM-YYYY or DD/MM/YYYY
|
14 |
+
text = re.sub(r'\d{2}[-/]\d{2}[-/]\d{4}', '', text)
|
15 |
+
|
16 |
+
# Remove phone numbers
|
17 |
+
text = re.sub(r'\+\d{2}\s?\d{2,3}\s?\d{3,4}\s?\d{4}', '', text)
|
18 |
+
|
19 |
+
# Remove specific text format
|
20 |
+
text = re.sub(r'Issued\s\w+\s\d{4}Credential ID \w+', '', text)
|
21 |
+
|
22 |
+
# Remove extra spaces between words
|
23 |
+
text = re.sub(r'\s+', ' ', text)
|
24 |
+
|
25 |
+
# Add a space before a word containing a capital letter in the middle
|
26 |
+
text = re.sub(r'(?<=[a-z])(?=[A-Z])', ' ', text)
|
27 |
+
|
28 |
+
return text
|
app.py
ADDED
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import streamlit as st
|
3 |
+
from PyPDF2 import PdfReader
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
from FindKeyword import FindKeyWords
|
6 |
+
from PreprocessText import preprocess_text
|
7 |
+
from model_Responce import model_prediction
|
8 |
+
from streamlit_extras.add_vertical_space import add_vertical_space
|
9 |
+
from langchain.text_splitter import CharacterTextSplitter
|
10 |
+
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings
|
11 |
+
from langchain.vectorstores import FAISS
|
12 |
+
# from langchain.chat_models import ChatOpenAI
|
13 |
+
# from langchain.memory import ConversationBufferMemory
|
14 |
+
# from langchain.chains import ConversationalRetrievalChain
|
15 |
+
from htmlTemplates import css, bot_template, user_template
|
16 |
+
from InstructorEmbedding import INSTRUCTOR
|
17 |
+
import numpy as np
|
18 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
19 |
+
|
20 |
+
def get_text_chunks(text):
|
21 |
+
text_splitter = CharacterTextSplitter(
|
22 |
+
separator="\n",
|
23 |
+
chunk_size=1000,
|
24 |
+
chunk_overlap=200,
|
25 |
+
length_function=len
|
26 |
+
)
|
27 |
+
chunks = text_splitter.split_text(text)
|
28 |
+
return chunks
|
29 |
+
|
30 |
+
# Assuming this function encodes the question into a vector representation
|
31 |
+
def encode_question(question):
|
32 |
+
embeddings = HuggingFaceInstructEmbeddings() # Instantiate the embeddings model
|
33 |
+
question_vector = embeddings.embed_query(question) # Encode the question into a vector
|
34 |
+
return question_vector
|
35 |
+
|
36 |
+
# def handle_user_input(question):
|
37 |
+
# response = st.session_state.conversation({'question':question})
|
38 |
+
# st.session_state.chat_history = response('chat_history')
|
39 |
+
|
40 |
+
# for i,message in enumerate(st.session_state.chat_history):
|
41 |
+
# if i % 2 == 0:
|
42 |
+
# st.write(user_template.replace("{{MSG}}",message.content),unsafe_allow_html=True)
|
43 |
+
# else:
|
44 |
+
# st.write(bot_template.replace("{{MSG}}",message.content),unsafe_allow_html=True)
|
45 |
+
|
46 |
+
# def get_conversation_chain(vector_store):
|
47 |
+
# llm = ChatOpenAI()
|
48 |
+
# memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
|
49 |
+
# conversation_chain = ConversationalRetrievalChain.from_llm(
|
50 |
+
# llm=llm,
|
51 |
+
# retriever=vector_store.as_retriever(),
|
52 |
+
# memory = memory
|
53 |
+
# )
|
54 |
+
# return conversation_chain
|
55 |
+
|
56 |
+
def save_vector_store(text_chunks):
|
57 |
+
# embeddings = OpenAIEmbeddings()
|
58 |
+
# model = INSTRUCTOR('hkunlp/instructor-base')
|
59 |
+
# embeddings = model.encode(raw_text)
|
60 |
+
embeddings = HuggingFaceInstructEmbeddings()
|
61 |
+
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
|
62 |
+
new_db = FAISS.load_local("faiss_index_V2", embeddings)
|
63 |
+
new_db.merge_from(vectorstore)
|
64 |
+
new_db.save_local('faiss_index_V2')
|
65 |
+
|
66 |
+
return st.write("vector Store is Saved")
|
67 |
+
|
68 |
+
def button_function(all_text):
|
69 |
+
# Add your desired functionality here
|
70 |
+
# predictions = []
|
71 |
+
for item in all_text:
|
72 |
+
text = item['text']
|
73 |
+
# filename = item['filename']
|
74 |
+
pred = model_prediction(text)
|
75 |
+
# predictions.append({"filename": filename, "prediction": pred})
|
76 |
+
item['prediction'] = pred
|
77 |
+
return all_text
|
78 |
+
|
79 |
+
def get_pdf_text(pdfs,preprocess=True):
|
80 |
+
if preprocess:
|
81 |
+
all_text = []
|
82 |
+
for pdf in pdfs:
|
83 |
+
# Process each uploaded PDF file
|
84 |
+
# Reading PDF
|
85 |
+
pdf_reader = PdfReader(pdf)
|
86 |
+
|
87 |
+
# Get the filename of the PDF
|
88 |
+
filename = pdf.name
|
89 |
+
|
90 |
+
text = ""
|
91 |
+
# Reading Each Page
|
92 |
+
for page in pdf_reader.pages:
|
93 |
+
# Extracting Text in Every Page
|
94 |
+
text += page.extract_text()
|
95 |
+
# Preprocess the text
|
96 |
+
text = preprocess_text(text)
|
97 |
+
# Appending to array
|
98 |
+
all_text.append({"filename": filename, "text": text})
|
99 |
+
return all_text
|
100 |
+
|
101 |
+
else:
|
102 |
+
text = ""
|
103 |
+
for pdf in pdfs:
|
104 |
+
# Process each uploaded PDF file
|
105 |
+
# Reading PDF
|
106 |
+
pdf_reader = PdfReader(pdf)
|
107 |
+
|
108 |
+
# Reading Each Page
|
109 |
+
for page in pdf_reader.pages:
|
110 |
+
# Extracting Text in Every Page
|
111 |
+
text += page.extract_text()
|
112 |
+
|
113 |
+
# text = preprocess_text(text)
|
114 |
+
return text
|
115 |
+
|
116 |
+
def filter_keywords(all_text, keywords):
|
117 |
+
filtered_text = []
|
118 |
+
for item in all_text:
|
119 |
+
filename = item['filename']
|
120 |
+
text = item['text']
|
121 |
+
filtered_text_with_keywords = FindKeyWords(keywords, text)
|
122 |
+
filtered_text.append({"filename": filename, "text": filtered_text_with_keywords})
|
123 |
+
return filtered_text
|
124 |
+
|
125 |
+
|
126 |
+
# Main body
|
127 |
+
def main():
|
128 |
+
# vector_store = None
|
129 |
+
load_dotenv()
|
130 |
+
st.header("Resume Filter using Keywords 💬")
|
131 |
+
|
132 |
+
# Sidebar contents
|
133 |
+
with st.sidebar:
|
134 |
+
st.title('🤗💬 LLM Chat App')
|
135 |
+
# upload a PDF file
|
136 |
+
pdfs = st.file_uploader("Upload your Resumes", type='pdf',accept_multiple_files=True)
|
137 |
+
|
138 |
+
# Get user preference for matching keywords
|
139 |
+
# match_all_keywords = st.checkbox("Match All Keywords")
|
140 |
+
|
141 |
+
# Choose functionality: Prediction or Filtering
|
142 |
+
functionality = st.radio("Choose functionality:", ("Make Predictions", "Filter Keywords","Predict the Suitable canditate","Ask Questions"))
|
143 |
+
if functionality == "Ask Questions":
|
144 |
+
if st.button('Process'):
|
145 |
+
with st.spinner("Processing"):
|
146 |
+
# get pdf text
|
147 |
+
raw_text = get_pdf_text(pdfs, preprocess=False)
|
148 |
+
|
149 |
+
# get the text chunk
|
150 |
+
text_chunks = get_text_chunks(raw_text)
|
151 |
+
|
152 |
+
# create vector store
|
153 |
+
save_vector_store(text_chunks)
|
154 |
+
add_vertical_space(5)
|
155 |
+
st.write('Made with ❤️ by Fazni Farook')
|
156 |
+
|
157 |
+
|
158 |
+
if pdfs is not None:
|
159 |
+
all_text = get_pdf_text(pdfs)
|
160 |
+
|
161 |
+
# if 'conversation' not in st.session_state:
|
162 |
+
# st.session_state.conversation = None
|
163 |
+
|
164 |
+
# if 'chat_history' not in st.session_state:
|
165 |
+
# st.session_state.chat_history = None
|
166 |
+
|
167 |
+
if functionality == "Make Predictions":
|
168 |
+
if st.button('Make Prediction'):
|
169 |
+
with st.spinner("Progressing"):
|
170 |
+
all_text = button_function(all_text)
|
171 |
+
|
172 |
+
for item in all_text:
|
173 |
+
filename = item["filename"]
|
174 |
+
text = item["text"]
|
175 |
+
pred = item["prediction"]
|
176 |
+
st.markdown(f"**Filename: {filename}**")
|
177 |
+
# st.markdown(text, unsafe_allow_html=True)
|
178 |
+
st.markdown(f"**Prediction: {pred}**")
|
179 |
+
st.markdown("---")
|
180 |
+
|
181 |
+
elif functionality == "Filter Keywords":
|
182 |
+
# getting the keywords
|
183 |
+
keyword_input = st.text_input("Keyword")
|
184 |
+
keywords = [keyword.strip() for keyword in keyword_input.split(",")]
|
185 |
+
|
186 |
+
if st.button('Filter Keywords'):
|
187 |
+
with st.spinner("Progressing"):
|
188 |
+
filtered_text = filter_keywords(all_text, keywords)
|
189 |
+
|
190 |
+
for item in filtered_text:
|
191 |
+
filename = item["filename"]
|
192 |
+
text = item["text"]
|
193 |
+
st.markdown(f"**Filename: {filename}**")
|
194 |
+
st.markdown(text, unsafe_allow_html=True)
|
195 |
+
st.markdown("---")
|
196 |
+
|
197 |
+
elif functionality == "Predict the Suitable canditate":
|
198 |
+
# getting the keywords
|
199 |
+
keyword = st.text_input("Keyword")
|
200 |
+
|
201 |
+
if st.button('Filter Resumes'):
|
202 |
+
with st.spinner("Progressing"):
|
203 |
+
all_text = button_function(all_text)
|
204 |
+
# filtered_text = filter_keywords(all_text, keywords)
|
205 |
+
count = 0
|
206 |
+
for item in all_text:
|
207 |
+
filename = item["filename"]
|
208 |
+
prediction = item["prediction"]
|
209 |
+
if keyword.lower()==prediction.lower():
|
210 |
+
count+=1
|
211 |
+
st.markdown(f"**Filename: {filename}**")
|
212 |
+
st.markdown(prediction, unsafe_allow_html=True)
|
213 |
+
st.markdown("---")
|
214 |
+
|
215 |
+
if count==0:
|
216 |
+
st.markdown("No match found")
|
217 |
+
|
218 |
+
elif functionality == "Ask Questions":
|
219 |
+
|
220 |
+
embeddings = HuggingFaceInstructEmbeddings()
|
221 |
+
|
222 |
+
new_db = FAISS.load_local("faiss_index_V2", embeddings)
|
223 |
+
|
224 |
+
st.write(css,unsafe_allow_html=True)
|
225 |
+
|
226 |
+
# create conversation chain
|
227 |
+
# st.session_state.conversation = get_conversation_chain(vector_store)
|
228 |
+
|
229 |
+
question = st.text_input("Ask Question")
|
230 |
+
|
231 |
+
if st.button('Ask Question'):
|
232 |
+
with st.spinner("Processing"):
|
233 |
+
if question:
|
234 |
+
# Convert the question to a vector
|
235 |
+
question_vector = encode_question(question)
|
236 |
+
|
237 |
+
# Convert the vector store to a compatible format
|
238 |
+
output = new_db.similarity_search_by_vector(question_vector)
|
239 |
+
page_content = output[0].page_content
|
240 |
+
st.write(page_content)
|
241 |
+
|
242 |
+
if __name__=='__main__':
|
243 |
+
main()
|
htmlTemplates.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
css = '''
|
2 |
+
<style>
|
3 |
+
.chat-message {
|
4 |
+
padding: 1.5rem; border-radius: 0.5rem; margin-bottom: 1rem; display: flex
|
5 |
+
}
|
6 |
+
.chat-message.user {
|
7 |
+
background-color: #2b313e
|
8 |
+
}
|
9 |
+
.chat-message.bot {
|
10 |
+
background-color: #475063
|
11 |
+
}
|
12 |
+
.chat-message .avatar {
|
13 |
+
width: 20%;
|
14 |
+
}
|
15 |
+
.chat-message .avatar img {
|
16 |
+
max-width: 78px;
|
17 |
+
max-height: 78px;
|
18 |
+
border-radius: 50%;
|
19 |
+
object-fit: cover;
|
20 |
+
}
|
21 |
+
.chat-message .message {
|
22 |
+
width: 80%;
|
23 |
+
padding: 0 1.5rem;
|
24 |
+
color: #fff;
|
25 |
+
}
|
26 |
+
'''
|
27 |
+
|
28 |
+
bot_template = '''
|
29 |
+
<div class="chat-message bot">
|
30 |
+
<div class="avatar">
|
31 |
+
<img src="https://i.ibb.co/cN0nmSj/Screenshot-2023-05-28-at-02-37-21.png" style="max-height: 78px; max-width: 78px; border-radius: 50%; object-fit: cover;">
|
32 |
+
</div>
|
33 |
+
<div class="message">{{MSG}}</div>
|
34 |
+
</div>
|
35 |
+
'''
|
36 |
+
|
37 |
+
user_template = '''
|
38 |
+
<div class="chat-message user">
|
39 |
+
<div class="avatar">
|
40 |
+
<img src="https://i.ibb.co/rdZC7LZ/Photo-logo-1.png">
|
41 |
+
</div>
|
42 |
+
<div class="message">{{MSG}}</div>
|
43 |
+
</div>
|
44 |
+
'''
|
model_Responce.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pickle
|
2 |
+
import joblib
|
3 |
+
import numpy as np
|
4 |
+
import tensorflow as tf
|
5 |
+
from keras.utils import pad_sequences
|
6 |
+
from keras.preprocessing.text import Tokenizer
|
7 |
+
|
8 |
+
# Load the model from the pickle file
|
9 |
+
# filename = 'F:/CVFilter/models/model_pk.pkl'
|
10 |
+
# with open(filename, 'rb') as file:
|
11 |
+
# model = pickle.load(file)
|
12 |
+
|
13 |
+
# Load the saved model
|
14 |
+
# model = joblib.load('F:\CVFilter\models\model.joblib')
|
15 |
+
|
16 |
+
model = tf.keras.models.load_model('F:\CVFilter\models\model.h5')
|
17 |
+
|
18 |
+
tokenfile = 'F:/CVFilter/tokenized_words/tokenized_words.pkl'
|
19 |
+
# Load the tokenized words from the pickle file
|
20 |
+
with open(tokenfile, 'rb') as file:
|
21 |
+
loaded_tokenized_words = pickle.load(file)
|
22 |
+
|
23 |
+
max_review_length = 200
|
24 |
+
tokenizer = Tokenizer(num_words=10000, #max no. of unique words to keep
|
25 |
+
filters='!"#$%&()*+,-./:;<=>?@[\]^_`{|}~',
|
26 |
+
lower=True #convert to lower case
|
27 |
+
)
|
28 |
+
tokenizer.fit_on_texts(loaded_tokenized_words)
|
29 |
+
|
30 |
+
outcome_labels = ['Business Analyst', 'Cyber Security','Data Engineer','Data Science','DevOps','Machine Learning Engineer','Mobile App Developer','Network Engineer','Quality Assurance','Software Engineer']
|
31 |
+
|
32 |
+
def model_prediction(text, model=model, tokenizer=tokenizer, labels=outcome_labels):
|
33 |
+
seq = tokenizer.texts_to_sequences([text])
|
34 |
+
padded = pad_sequences(seq, maxlen=max_review_length)
|
35 |
+
pred = model.predict(padded)
|
36 |
+
# print("Probability distribution: ", pred)
|
37 |
+
# print("Field ")
|
38 |
+
return labels[np.argmax(pred)]
|
models/model.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cc809fc62b4f84621e22ecf8fe9c2af763d9f4fd0f1383c92e1e0a9aaae59674
|
3 |
+
size 51959288
|
requirements.txt
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
langchain==0.0.195
|
2 |
+
PyPDF2==3.0.1
|
3 |
+
python-dotenv==1.0.0
|
4 |
+
streamlit==1.18.1
|
5 |
+
faiss-cpu==1.7.4
|
6 |
+
streamlit-extras
|
7 |
+
altair<5
|
8 |
+
pdfminer.six==20221105
|
9 |
+
numpy
|
10 |
+
keras==2.12.0
|
11 |
+
tensorflow==2.12.0
|
12 |
+
joblib
|
13 |
+
openai
|
14 |
+
huggingface_hub
|
15 |
+
InstructorEmbedding
|
16 |
+
torch
|
17 |
+
sentence_transformers
|