fawadrashid
commited on
Commit
•
e585f50
1
Parent(s):
536a548
Upload 3 files
Browse files- Dockerfile +0 -2
- app.py +21 -184
- requirements.txt +3 -5
Dockerfile
CHANGED
@@ -24,6 +24,4 @@ USER user
|
|
24 |
|
25 |
RUN pip3 install -r requirements.txt
|
26 |
|
27 |
-
EXPOSE 7860
|
28 |
-
|
29 |
CMD ["python", "app.py"]
|
|
|
24 |
|
25 |
RUN pip3 install -r requirements.txt
|
26 |
|
|
|
|
|
27 |
CMD ["python", "app.py"]
|
app.py
CHANGED
@@ -1,190 +1,27 @@
|
|
1 |
-
import
|
2 |
-
|
3 |
-
from transformers import pipeline
|
4 |
-
|
5 |
-
import numpy as np
|
6 |
import gradio as gr
|
|
|
|
|
|
|
|
|
7 |
|
8 |
-
def _grab_best_device(use_gpu=False):
|
9 |
-
if torch.cuda.device_count() > 0 and use_gpu:
|
10 |
-
device = "cuda"
|
11 |
-
else:
|
12 |
-
device = "cpu"
|
13 |
-
return device
|
14 |
-
|
15 |
-
device = _grab_best_device()
|
16 |
-
|
17 |
-
default_model_per_language = {
|
18 |
-
"english": "kakao-enterprise/vits-ljs",
|
19 |
-
"spanish": "facebook/mms-tts-spa",
|
20 |
-
}
|
21 |
-
|
22 |
-
models_per_language = {
|
23 |
-
"english": [
|
24 |
-
"ylacombe/vits_ljs_midlands_male_monospeaker",
|
25 |
-
],
|
26 |
-
"spanish": [
|
27 |
-
"ylacombe/mms-spa-finetuned-chilean-monospeaker",
|
28 |
-
]
|
29 |
-
}
|
30 |
-
|
31 |
-
HUB_PATH = "ylacombe/vits_ljs_midlands_male_monospeaker"
|
32 |
-
|
33 |
-
|
34 |
-
pipe_dict = {
|
35 |
-
"current_model": "ylacombe/vits_ljs_midlands_male_monospeaker",
|
36 |
-
"pipe": pipeline("text-to-speech", model=HUB_PATH, device=device),
|
37 |
-
"original_pipe": pipeline("text-to-speech", model=default_model_per_language["english"], device=device),
|
38 |
-
"language": "english",
|
39 |
-
}
|
40 |
-
|
41 |
-
title = """
|
42 |
-
# Explore MMS finetuning
|
43 |
-
## Or how to access truely multilingual TTS
|
44 |
-
|
45 |
-
Massively Multilingual Speech (MMS) models are light-weight, low-latency TTS models based on the [VITS architecture](https://huggingface.co/docs/transformers/model_doc/vits).
|
46 |
-
|
47 |
-
Meta's [MMS](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html),
|
48 |
-
and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts).
|
49 |
-
|
50 |
-
Coupled with the right data and the right training recipe, you can get an excellent finetuned version of every MMS checkpoints in **20 minutes** with as little as **80 to 150 samples**.
|
51 |
-
|
52 |
-
Training recipe available in this [github repository](https://github.com/ylacombe/finetune-hf-vits)!
|
53 |
-
"""
|
54 |
-
|
55 |
-
max_speakers = 15
|
56 |
-
|
57 |
-
|
58 |
-
# Inference
|
59 |
-
def generate_audio(text, model_id, language):
|
60 |
-
|
61 |
-
if pipe_dict["language"] != language:
|
62 |
-
gr.Warning(f"Language has changed - loading new default model: {default_model_per_language[language]}")
|
63 |
-
pipe_dict["language"] = language
|
64 |
-
pipe_dict["original_pipe"] = pipeline("text-to-speech", model=default_model_per_language[language], device=device)
|
65 |
-
|
66 |
-
if pipe_dict["current_model"] != model_id:
|
67 |
-
gr.Warning("Model has changed - loading new model")
|
68 |
-
pipe_dict["pipe"] = pipeline("text-to-speech", model=model_id, device=device)
|
69 |
-
pipe_dict["current_model"] = model_id
|
70 |
-
|
71 |
-
num_speakers = pipe_dict["pipe"].model.config.num_speakers
|
72 |
-
|
73 |
-
out = []
|
74 |
-
# first generate original model result
|
75 |
-
output = pipe_dict["original_pipe"](text)
|
76 |
-
output = gr.Audio(value = (output["sampling_rate"], output["audio"].squeeze()), type="numpy", autoplay=False, label=f"Non finetuned model prediction {default_model_per_language[language]}", show_label=True,
|
77 |
-
visible=True)
|
78 |
-
out.append(output)
|
79 |
-
|
80 |
-
|
81 |
-
if num_speakers>1:
|
82 |
-
for i in range(min(num_speakers, max_speakers - 1)):
|
83 |
-
forward_params = {"speaker_id": i}
|
84 |
-
output = pipe_dict["pipe"](text, forward_params=forward_params)
|
85 |
-
|
86 |
-
output = gr.Audio(value = (output["sampling_rate"], output["audio"].squeeze()), type="numpy", autoplay=False, label=f"Generated Audio - speaker {i}", show_label=True,
|
87 |
-
visible=True)
|
88 |
-
out.append(output)
|
89 |
-
out.extend([gr.Audio(visible=False)]*(max_speakers-num_speakers))
|
90 |
-
else:
|
91 |
-
output = pipe_dict["pipe"](text)
|
92 |
-
output = gr.Audio(value = (output["sampling_rate"], output["audio"].squeeze()), type="numpy", autoplay=False, label="Generated Audio - Mono speaker", show_label=True,
|
93 |
-
visible=True)
|
94 |
-
out.append(output)
|
95 |
-
out.extend([gr.Audio(visible=False)]*(max_speakers-2))
|
96 |
-
return out
|
97 |
-
|
98 |
-
|
99 |
-
css = """
|
100 |
-
#container{
|
101 |
-
margin: 0 auto;
|
102 |
-
max-width: 80rem;
|
103 |
-
}
|
104 |
-
#intro{
|
105 |
-
max-width: 100%;
|
106 |
-
text-align: center;
|
107 |
-
margin: 0 auto;
|
108 |
-
}
|
109 |
-
"""
|
110 |
-
# Gradio blocks demo
|
111 |
-
with gr.Blocks(css=css) as demo_blocks:
|
112 |
-
gr.Markdown(title, elem_id="intro")
|
113 |
-
|
114 |
-
with gr.Row():
|
115 |
-
with gr.Column():
|
116 |
-
inp_text = gr.Textbox(label="Input Text", info="What sentence would you like to synthesise?")
|
117 |
-
btn = gr.Button("Generate Audio!")
|
118 |
-
language = gr.Dropdown(
|
119 |
-
default_model_per_language.keys(),
|
120 |
-
value = "spanish",
|
121 |
-
label = "language",
|
122 |
-
info = "Language that you want to test"
|
123 |
-
)
|
124 |
-
|
125 |
-
model_id = gr.Dropdown(
|
126 |
-
models_per_language["spanish"],
|
127 |
-
value="ylacombe/mms-spa-finetuned-chilean-monospeaker",
|
128 |
-
label="Model",
|
129 |
-
info="Model you want to test",
|
130 |
-
)
|
131 |
-
|
132 |
-
with gr.Column():
|
133 |
-
outputs = []
|
134 |
-
for i in range(max_speakers):
|
135 |
-
out_audio = gr.Audio(type="numpy", autoplay=False, label=f"Generated Audio - speaker {i}", show_label=True, visible=False)
|
136 |
-
outputs.append(out_audio)
|
137 |
-
|
138 |
-
with gr.Accordion("Datasets and models details", open=False):
|
139 |
-
gr.Markdown("""
|
140 |
-
|
141 |
-
For each language, we used 100 to 150 samples of a single speaker to finetune the model.
|
142 |
-
|
143 |
-
### Spanish
|
144 |
-
|
145 |
-
* **Model**: [Spanish MMS TTS](https://huggingface.co/facebook/mms-tts-spa).
|
146 |
-
* **Datasets**:
|
147 |
-
- [Chilean Spanish TTS dataset](https://huggingface.co/datasets/ylacombe/google-chilean-spanish).
|
148 |
-
|
149 |
-
### English
|
150 |
-
|
151 |
-
* **Model**: [VITS-ljs](https://huggingface.co/kakao-enterprise/vits-ljs)
|
152 |
-
* **Dataset**: [British Isles Accent](https://huggingface.co/datasets/ylacombe/english_dialects). For each accent, we used 100 to 150 samples of a single speaker to finetune [VITS-ljs](https://huggingface.co/kakao-enterprise/vits-ljs).
|
153 |
-
|
154 |
-
|
155 |
-
""")
|
156 |
-
|
157 |
-
with gr.Accordion("Run VITS and MMS with transformers", open=False):
|
158 |
-
gr.Markdown(
|
159 |
-
"""
|
160 |
-
```bash
|
161 |
-
pip install transformers
|
162 |
-
```
|
163 |
-
```py
|
164 |
-
from transformers import pipeline
|
165 |
-
import scipy
|
166 |
-
pipe = pipeline("text-to-speech", model="kakao-enterprise/vits-ljs", device=0)
|
167 |
-
|
168 |
-
results = pipe("A cinematic shot of a baby racoon wearing an intricate italian priest robe")
|
169 |
-
|
170 |
-
# write to a wav file
|
171 |
-
scipy.io.wavfile.write("audio_vits.wav", rate=results["sampling_rate"], data=results["audio"].squeeze())
|
172 |
-
```
|
173 |
-
"""
|
174 |
-
)
|
175 |
|
|
|
176 |
|
177 |
-
|
178 |
-
models_per_language[language],
|
179 |
-
value=models_per_language[language][0],
|
180 |
-
label="Model",
|
181 |
-
info="Model you want to test",
|
182 |
-
),
|
183 |
-
language,
|
184 |
-
model_id
|
185 |
-
)
|
186 |
|
187 |
-
|
188 |
|
189 |
-
|
190 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
|
|
|
|
|
|
|
|
2 |
import gradio as gr
|
3 |
+
from helper import load_image_from_url, render_results_in_image
|
4 |
+
from transformers import pipeline
|
5 |
+
from transformers.utils import logging
|
6 |
+
logging.set_verbosity_error()
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
od_pipe = pipeline("object-detection", "./models/facebook/detr-resnet-50")
|
10 |
|
11 |
+
def get_pipeline_prediction(pil_image):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
+
pipeline_output = od_pipe(pil_image)
|
14 |
|
15 |
+
processed_image = render_results_in_image(pil_image,
|
16 |
+
pipeline_output)
|
17 |
+
return processed_image
|
18 |
+
|
19 |
+
demo = gr.Interface(
|
20 |
+
fn=get_pipeline_prediction,
|
21 |
+
inputs=gr.Image(label="Input image",
|
22 |
+
type="pil"),
|
23 |
+
outputs=gr.Image(label="Output image with predicted instances",
|
24 |
+
type="pil")
|
25 |
+
)
|
26 |
+
|
27 |
+
demo_blocks.queue().launch(server_name="0.0.0.0", server_port=7860)
|
requirements.txt
CHANGED
@@ -1,9 +1,7 @@
|
|
1 |
opencv-python-headless<4.3
|
2 |
gradio
|
3 |
-
torch
|
4 |
-
torchaudio
|
5 |
transformers
|
6 |
-
ffmpeg
|
7 |
-
librosa
|
8 |
phonemizer
|
9 |
-
py-espeak-ng
|
|
|
|
|
|
1 |
opencv-python-headless<4.3
|
2 |
gradio
|
|
|
|
|
3 |
transformers
|
|
|
|
|
4 |
phonemizer
|
5 |
+
py-espeak-ng
|
6 |
+
inflect
|
7 |
+
timm
|