Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
| import base64 | |
| import json | |
| import os | |
| from pathlib import Path | |
| import gradio as gr | |
| import numpy as np | |
| import openai | |
| from dotenv import load_dotenv | |
| from fastapi import FastAPI | |
| from fastapi.responses import HTMLResponse, StreamingResponse | |
| from fastrtc import ( | |
| AdditionalOutputs, | |
| ReplyOnStopWords, | |
| Stream, | |
| get_stt_model, | |
| get_twilio_turn_credentials, | |
| ) | |
| from gradio.utils import get_space | |
| from pydantic import BaseModel | |
| load_dotenv() | |
| curr_dir = Path(__file__).parent | |
| client = openai.OpenAI( | |
| api_key=os.environ.get("SAMBANOVA_API_KEY"), | |
| base_url="https://api.sambanova.ai/v1", | |
| ) | |
| model = get_stt_model() | |
| def response( | |
| audio: tuple[int, np.ndarray], | |
| gradio_chatbot: list[dict] | None = None, | |
| conversation_state: list[dict] | None = None, | |
| ): | |
| gradio_chatbot = gradio_chatbot or [] | |
| conversation_state = conversation_state or [] | |
| text = model.stt(audio) | |
| print("STT in handler", text) | |
| sample_rate, array = audio | |
| gradio_chatbot.append( | |
| {"role": "user", "content": gr.Audio((sample_rate, array.squeeze()))} | |
| ) | |
| yield AdditionalOutputs(gradio_chatbot, conversation_state) | |
| conversation_state.append({"role": "user", "content": text}) | |
| request = client.chat.completions.create( | |
| model="Meta-Llama-3.2-3B-Instruct", | |
| messages=conversation_state, # type: ignore | |
| temperature=0.1, | |
| top_p=0.1, | |
| ) | |
| response = {"role": "assistant", "content": request.choices[0].message.content} | |
| conversation_state.append(response) | |
| gradio_chatbot.append(response) | |
| yield AdditionalOutputs(gradio_chatbot, conversation_state) | |
| chatbot = gr.Chatbot(type="messages", value=[]) | |
| state = gr.State(value=[]) | |
| stream = Stream( | |
| ReplyOnStopWords( | |
| response, # type: ignore | |
| stop_words=["computer"], | |
| input_sample_rate=16000, | |
| ), | |
| mode="send", | |
| modality="audio", | |
| additional_inputs=[chatbot, state], | |
| additional_outputs=[chatbot, state], | |
| additional_outputs_handler=lambda *a: (a[2], a[3]), | |
| concurrency_limit=5 if get_space() else None, | |
| time_limit=90 if get_space() else None, | |
| rtc_configuration=get_twilio_turn_credentials() if get_space() else None, | |
| ) | |
| app = FastAPI() | |
| stream.mount(app) | |
| class Message(BaseModel): | |
| role: str | |
| content: str | |
| class InputData(BaseModel): | |
| webrtc_id: str | |
| chatbot: list[Message] | |
| state: list[Message] | |
| async def _(): | |
| rtc_config = get_twilio_turn_credentials() if get_space() else None | |
| html_content = (curr_dir / "index.html").read_text() | |
| html_content = html_content.replace("__RTC_CONFIGURATION__", json.dumps(rtc_config)) | |
| return HTMLResponse(content=html_content) | |
| async def _(data: InputData): | |
| body = data.model_dump() | |
| stream.set_input(data.webrtc_id, body["chatbot"], body["state"]) | |
| def audio_to_base64(file_path): | |
| audio_format = "wav" | |
| with open(file_path, "rb") as audio_file: | |
| encoded_audio = base64.b64encode(audio_file.read()).decode("utf-8") | |
| return f"data:audio/{audio_format};base64,{encoded_audio}" | |
| async def _(webrtc_id: str): | |
| async def output_stream(): | |
| async for output in stream.output_stream(webrtc_id): | |
| chatbot = output.args[0] | |
| state = output.args[1] | |
| data = { | |
| "message": state[-1], | |
| "audio": audio_to_base64(chatbot[-1]["content"].value["path"]) | |
| if chatbot[-1]["role"] == "user" | |
| else None, | |
| } | |
| yield f"event: output\ndata: {json.dumps(data)}\n\n" | |
| return StreamingResponse(output_stream(), media_type="text/event-stream") | |
| if __name__ == "__main__": | |
| import os | |
| if (mode := os.getenv("MODE")) == "UI": | |
| stream.ui.launch(server_port=7860) | |
| elif mode == "PHONE": | |
| raise ValueError("Phone mode not supported") | |
| else: | |
| import uvicorn | |
| uvicorn.run(app, host="0.0.0.0", port=7860) | |