Spaces:
Runtime error
Runtime error
anbucur
commited on
Commit
·
d81760a
1
Parent(s):
8c93fbf
Enhance UI dropdown options and improve ProductionDesignModel initialization
Browse files- Updated UI dropdowns in app.py to provide a comprehensive list of choices for room types, design styles, and color moods, enhancing user experience.
- Refactored layout for better organization of UI elements.
- Improved the ProductionDesignModel class in prod_model.py by implementing a more robust model initialization process, including advanced architecture setup and detailed logging for better error tracking.
- Added new model dependencies in requirements.txt to support the updated functionality.
- app.py +86 -62
- prod_model.py +191 -130
- requirements.txt +7 -15
app.py
CHANGED
|
@@ -256,29 +256,53 @@ def create_ui(model: DesignModel):
|
|
| 256 |
with gr.Group():
|
| 257 |
gr.Markdown("## 🏠 Basic Settings")
|
| 258 |
with gr.Row():
|
| 259 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 260 |
label="Room Type",
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 265 |
label="Design Style",
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 270 |
label="Color Mood",
|
| 271 |
-
|
| 272 |
-
value="None"
|
| 273 |
)
|
| 274 |
|
| 275 |
# Row 2 - Surface Finishes
|
| 276 |
-
|
| 277 |
# Floor Options
|
| 278 |
with gr.Column(scale=1):
|
| 279 |
with gr.Group():
|
| 280 |
gr.Markdown("## 🎨 Floor Options")
|
| 281 |
-
|
| 282 |
choices=[
|
| 283 |
"Keep Existing", "Hardwood", "Stone Tiles", "Porcelain Tiles",
|
| 284 |
"Soft Carpet", "Polished Concrete", "Marble", "Vinyl",
|
|
@@ -287,9 +311,9 @@ def create_ui(model: DesignModel):
|
|
| 287 |
"Mosaic Tiles", "Luxury Vinyl Tiles", "Stained Concrete"
|
| 288 |
],
|
| 289 |
label="Material",
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
choices=[
|
| 294 |
"Keep Existing", "Light Oak", "Rich Walnut", "Cool Gray",
|
| 295 |
"Whitewashed", "Warm Cherry", "Deep Brown", "Classic Black",
|
|
@@ -298,10 +322,10 @@ def create_ui(model: DesignModel):
|
|
| 298 |
"Cream Travertine", "Dark Slate", "Golden Teak",
|
| 299 |
"Rustic Pine", "Ebony"
|
| 300 |
],
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
choices=[
|
| 306 |
"Keep Existing", "Classic Straight", "Elegant Herringbone",
|
| 307 |
"V-Pattern", "Decorative Parquet", "Diagonal Layout",
|
|
@@ -311,17 +335,17 @@ def create_ui(model: DesignModel):
|
|
| 311 |
"Windmill Pattern", "Large Format", "Mixed Width"
|
| 312 |
],
|
| 313 |
label="Pattern",
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
# Wall Options
|
| 318 |
with gr.Column(scale=1):
|
| 319 |
with gr.Group():
|
| 320 |
gr.Markdown("## 🎨 Wall Options")
|
| 321 |
-
|
| 322 |
choices=[
|
| 323 |
"Keep Existing", "Fresh Paint", "Designer Wallpaper",
|
| 324 |
-
|
| 325 |
"Natural Stone", "Wooden Planks", "Modern Concrete",
|
| 326 |
"Venetian Plaster", "Wainscoting", "Shiplap",
|
| 327 |
"3D Wall Panels", "Fabric Panels", "Metal Panels",
|
|
@@ -329,9 +353,9 @@ def create_ui(model: DesignModel):
|
|
| 329 |
"Acoustic Panels", "Living Wall"
|
| 330 |
],
|
| 331 |
label="Treatment",
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
choices=[
|
| 336 |
"Keep Existing", "Crisp White", "Soft White", "Warm Beige",
|
| 337 |
"Gentle Gray", "Sky Blue", "Nature Green", "Sunny Yellow",
|
|
@@ -339,10 +363,10 @@ def create_ui(model: DesignModel):
|
|
| 339 |
"Terracotta", "Navy Blue", "Charcoal Gray", "Lavender",
|
| 340 |
"Olive Green", "Dusty Rose", "Teal", "Burgundy"
|
| 341 |
],
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
choices=[
|
| 347 |
"Keep Existing", "Soft Matte", "Subtle Eggshell",
|
| 348 |
"Pearl Satin", "Sleek Semi-Gloss", "High Gloss",
|
|
@@ -351,9 +375,9 @@ def create_ui(model: DesignModel):
|
|
| 351 |
"Venetian", "Lime Wash", "Concrete", "Rustic",
|
| 352 |
"Lacquered", "Hammered", "Patina"
|
| 353 |
],
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
|
| 358 |
# Row 3 - Wall Decorations and Special Requests
|
| 359 |
with gr.Row(elem_classes="wall-decorations-row"):
|
|
@@ -367,7 +391,7 @@ def create_ui(model: DesignModel):
|
|
| 367 |
with gr.Column():
|
| 368 |
with gr.Row():
|
| 369 |
art_print_enable = gr.Checkbox(label="Add Artwork", value=False)
|
| 370 |
-
|
| 371 |
choices=[
|
| 372 |
"None", "Classic Black & White", "Vibrant Colors",
|
| 373 |
"Single Color", "Soft Colors", "Modern Abstract",
|
|
@@ -378,8 +402,8 @@ def create_ui(model: DesignModel):
|
|
| 378 |
],
|
| 379 |
label="Art Style",
|
| 380 |
value="None"
|
| 381 |
-
|
| 382 |
-
|
| 383 |
choices=[
|
| 384 |
"None", "Modest", "Standard", "Statement", "Oversized",
|
| 385 |
"Gallery Wall", "Diptych", "Triptych", "Mini Series",
|
|
@@ -391,9 +415,9 @@ def create_ui(model: DesignModel):
|
|
| 391 |
|
| 392 |
# Mirror
|
| 393 |
with gr.Column():
|
| 394 |
-
|
| 395 |
mirror_enable = gr.Checkbox(label="Add Mirror", value=False)
|
| 396 |
-
|
| 397 |
choices=[
|
| 398 |
"None", "Gold", "Silver", "Black", "White", "Wood",
|
| 399 |
"Brass", "Bronze", "Copper", "Chrome", "Antique Gold",
|
|
@@ -402,8 +426,8 @@ def create_ui(model: DesignModel):
|
|
| 402 |
],
|
| 403 |
label="Frame Style",
|
| 404 |
value="None"
|
| 405 |
-
|
| 406 |
-
|
| 407 |
choices=[
|
| 408 |
"Small", "Medium", "Large", "Full Length",
|
| 409 |
"Oversized", "Double Width", "Floor Mirror",
|
|
@@ -419,7 +443,7 @@ def create_ui(model: DesignModel):
|
|
| 419 |
with gr.Column():
|
| 420 |
with gr.Row():
|
| 421 |
sconce_enable = gr.Checkbox(label="Add Wall Sconce", value=False)
|
| 422 |
-
|
| 423 |
choices=[
|
| 424 |
"None", "Black", "Gold", "Silver", "Bronze", "White",
|
| 425 |
"Brass", "Copper", "Chrome", "Antique Brass",
|
|
@@ -429,8 +453,8 @@ def create_ui(model: DesignModel):
|
|
| 429 |
],
|
| 430 |
label="Sconce Color",
|
| 431 |
value="None"
|
| 432 |
-
|
| 433 |
-
|
| 434 |
choices=[
|
| 435 |
"Modern", "Traditional", "Industrial", "Art Deco",
|
| 436 |
"Minimalist", "Vintage", "Contemporary", "Rustic",
|
|
@@ -444,9 +468,9 @@ def create_ui(model: DesignModel):
|
|
| 444 |
|
| 445 |
# Floating Shelves
|
| 446 |
with gr.Column():
|
| 447 |
-
|
| 448 |
shelf_enable = gr.Checkbox(label="Add Floating Shelves", value=False)
|
| 449 |
-
|
| 450 |
choices=[
|
| 451 |
"None", "White", "Black", "Natural Wood", "Glass",
|
| 452 |
"Dark Wood", "Light Wood", "Metal", "Gold", "Silver",
|
|
@@ -456,8 +480,8 @@ def create_ui(model: DesignModel):
|
|
| 456 |
],
|
| 457 |
label="Shelf Material",
|
| 458 |
value="None"
|
| 459 |
-
|
| 460 |
-
|
| 461 |
choices=[
|
| 462 |
"Small", "Medium", "Large", "Set of 3",
|
| 463 |
"Extra Long", "Corner Set", "Asymmetric Set",
|
|
@@ -466,13 +490,13 @@ def create_ui(model: DesignModel):
|
|
| 466 |
],
|
| 467 |
label="Shelf Size",
|
| 468 |
value="Medium"
|
| 469 |
-
|
| 470 |
|
| 471 |
-
|
| 472 |
with gr.Column():
|
| 473 |
-
|
| 474 |
plants_enable = gr.Checkbox(label="Add Plants", value=False)
|
| 475 |
-
|
| 476 |
choices=[
|
| 477 |
"None", "Hanging Plants", "Vertical Garden",
|
| 478 |
"Plant Shelf", "Single Plant", "Climbing Vines",
|
|
@@ -483,8 +507,8 @@ def create_ui(model: DesignModel):
|
|
| 483 |
],
|
| 484 |
label="Plant Type",
|
| 485 |
value="None"
|
| 486 |
-
|
| 487 |
-
|
| 488 |
choices=[
|
| 489 |
"Small", "Medium", "Large", "Mixed Sizes",
|
| 490 |
"Full Wall", "Statement Piece", "Compact",
|
|
@@ -499,7 +523,7 @@ def create_ui(model: DesignModel):
|
|
| 499 |
with gr.Column(scale=1):
|
| 500 |
with gr.Group():
|
| 501 |
gr.Markdown("## ✨ Special Requests")
|
| 502 |
-
|
| 503 |
label="Additional Details",
|
| 504 |
placeholder="Add any special requests or details here...",
|
| 505 |
lines=3
|
|
@@ -517,14 +541,14 @@ def create_ui(model: DesignModel):
|
|
| 517 |
step=1,
|
| 518 |
label="Quality Steps"
|
| 519 |
)
|
| 520 |
-
|
| 521 |
minimum=1,
|
| 522 |
maximum=20,
|
| 523 |
value=7.5,
|
| 524 |
step=0.1,
|
| 525 |
label="Design Freedom"
|
| 526 |
-
|
| 527 |
-
|
| 528 |
minimum=0.1,
|
| 529 |
maximum=1.0,
|
| 530 |
value=0.75,
|
|
@@ -544,7 +568,7 @@ def create_ui(model: DesignModel):
|
|
| 544 |
)
|
| 545 |
|
| 546 |
# Row 4 - Current Prompts
|
| 547 |
-
|
| 548 |
with gr.Group():
|
| 549 |
gr.Markdown("## 📝 Current Prompts")
|
| 550 |
prompt_display = gr.TextArea(
|
|
@@ -858,9 +882,9 @@ def main():
|
|
| 858 |
is_test_mode = "--test" in sys.argv
|
| 859 |
|
| 860 |
if is_test_mode:
|
| 861 |
-
|
| 862 |
from mock_model import MockDesignModel
|
| 863 |
-
|
| 864 |
else:
|
| 865 |
print("Starting in PRODUCTION mode...")
|
| 866 |
from prod_model import ProductionDesignModel
|
|
|
|
| 256 |
with gr.Group():
|
| 257 |
gr.Markdown("## 🏠 Basic Settings")
|
| 258 |
with gr.Row():
|
| 259 |
+
room_type = gr.Dropdown(
|
| 260 |
+
choices=[
|
| 261 |
+
"Living Room", "Bedroom", "Kitchen", "Dining Room",
|
| 262 |
+
"Bathroom", "Home Office", "Kids Room", "Master Bedroom",
|
| 263 |
+
"Guest Room", "Studio Apartment", "Entryway", "Hallway",
|
| 264 |
+
"Game Room", "Library", "Home Theater", "Gym"
|
| 265 |
+
],
|
| 266 |
label="Room Type",
|
| 267 |
+
value="Living Room"
|
| 268 |
+
)
|
| 269 |
+
style_preset = gr.Dropdown(
|
| 270 |
+
choices=[
|
| 271 |
+
"Modern", "Contemporary", "Minimalist", "Industrial",
|
| 272 |
+
"Scandinavian", "Mid-Century Modern", "Traditional",
|
| 273 |
+
"Transitional", "Farmhouse", "Rustic", "Bohemian",
|
| 274 |
+
"Art Deco", "Coastal", "Mediterranean", "Japanese",
|
| 275 |
+
"French Country", "Victorian", "Colonial", "Gothic",
|
| 276 |
+
"Baroque", "Rococo", "Neoclassical", "Eclectic",
|
| 277 |
+
"Zen", "Tropical", "Shabby Chic", "Hollywood Regency",
|
| 278 |
+
"Southwestern", "Asian Fusion", "Retro"
|
| 279 |
+
],
|
| 280 |
label="Design Style",
|
| 281 |
+
value="Modern"
|
| 282 |
+
)
|
| 283 |
+
color_scheme = gr.Dropdown(
|
| 284 |
+
choices=[
|
| 285 |
+
"Neutral", "Monochromatic", "Minimalist White",
|
| 286 |
+
"Warm Gray", "Cool Gray", "Earth Tones",
|
| 287 |
+
"Pastel", "Bold Primary", "Jewel Tones",
|
| 288 |
+
"Black and White", "Navy and Gold", "Forest Green",
|
| 289 |
+
"Desert Sand", "Ocean Blue", "Sunset Orange",
|
| 290 |
+
"Deep Purple", "Emerald Green", "Ruby Red",
|
| 291 |
+
"Sapphire Blue", "Golden Yellow", "Sage Green",
|
| 292 |
+
"Dusty Rose", "Charcoal", "Cream", "Burgundy",
|
| 293 |
+
"Teal", "Copper", "Silver", "Bronze", "Slate"
|
| 294 |
+
],
|
| 295 |
label="Color Mood",
|
| 296 |
+
value="Neutral"
|
|
|
|
| 297 |
)
|
| 298 |
|
| 299 |
# Row 2 - Surface Finishes
|
| 300 |
+
with gr.Row():
|
| 301 |
# Floor Options
|
| 302 |
with gr.Column(scale=1):
|
| 303 |
with gr.Group():
|
| 304 |
gr.Markdown("## 🎨 Floor Options")
|
| 305 |
+
floor_type = gr.Dropdown(
|
| 306 |
choices=[
|
| 307 |
"Keep Existing", "Hardwood", "Stone Tiles", "Porcelain Tiles",
|
| 308 |
"Soft Carpet", "Polished Concrete", "Marble", "Vinyl",
|
|
|
|
| 311 |
"Mosaic Tiles", "Luxury Vinyl Tiles", "Stained Concrete"
|
| 312 |
],
|
| 313 |
label="Material",
|
| 314 |
+
value="Keep Existing"
|
| 315 |
+
)
|
| 316 |
+
floor_color = gr.Dropdown(
|
| 317 |
choices=[
|
| 318 |
"Keep Existing", "Light Oak", "Rich Walnut", "Cool Gray",
|
| 319 |
"Whitewashed", "Warm Cherry", "Deep Brown", "Classic Black",
|
|
|
|
| 322 |
"Cream Travertine", "Dark Slate", "Golden Teak",
|
| 323 |
"Rustic Pine", "Ebony"
|
| 324 |
],
|
| 325 |
+
label="Color",
|
| 326 |
+
value="Keep Existing"
|
| 327 |
+
)
|
| 328 |
+
floor_pattern = gr.Dropdown(
|
| 329 |
choices=[
|
| 330 |
"Keep Existing", "Classic Straight", "Elegant Herringbone",
|
| 331 |
"V-Pattern", "Decorative Parquet", "Diagonal Layout",
|
|
|
|
| 335 |
"Windmill Pattern", "Large Format", "Mixed Width"
|
| 336 |
],
|
| 337 |
label="Pattern",
|
| 338 |
+
value="Keep Existing"
|
| 339 |
+
)
|
| 340 |
+
|
| 341 |
# Wall Options
|
| 342 |
with gr.Column(scale=1):
|
| 343 |
with gr.Group():
|
| 344 |
gr.Markdown("## 🎨 Wall Options")
|
| 345 |
+
wall_type = gr.Dropdown(
|
| 346 |
choices=[
|
| 347 |
"Keep Existing", "Fresh Paint", "Designer Wallpaper",
|
| 348 |
+
"Textured Finish", "Wood Panels", "Exposed Brick",
|
| 349 |
"Natural Stone", "Wooden Planks", "Modern Concrete",
|
| 350 |
"Venetian Plaster", "Wainscoting", "Shiplap",
|
| 351 |
"3D Wall Panels", "Fabric Panels", "Metal Panels",
|
|
|
|
| 353 |
"Acoustic Panels", "Living Wall"
|
| 354 |
],
|
| 355 |
label="Treatment",
|
| 356 |
+
value="Keep Existing"
|
| 357 |
+
)
|
| 358 |
+
wall_color = gr.Dropdown(
|
| 359 |
choices=[
|
| 360 |
"Keep Existing", "Crisp White", "Soft White", "Warm Beige",
|
| 361 |
"Gentle Gray", "Sky Blue", "Nature Green", "Sunny Yellow",
|
|
|
|
| 363 |
"Terracotta", "Navy Blue", "Charcoal Gray", "Lavender",
|
| 364 |
"Olive Green", "Dusty Rose", "Teal", "Burgundy"
|
| 365 |
],
|
| 366 |
+
label="Color",
|
| 367 |
+
value="Keep Existing"
|
| 368 |
+
)
|
| 369 |
+
wall_finish = gr.Dropdown(
|
| 370 |
choices=[
|
| 371 |
"Keep Existing", "Soft Matte", "Subtle Eggshell",
|
| 372 |
"Pearl Satin", "Sleek Semi-Gloss", "High Gloss",
|
|
|
|
| 375 |
"Venetian", "Lime Wash", "Concrete", "Rustic",
|
| 376 |
"Lacquered", "Hammered", "Patina"
|
| 377 |
],
|
| 378 |
+
label="Finish",
|
| 379 |
+
value="Keep Existing"
|
| 380 |
+
)
|
| 381 |
|
| 382 |
# Row 3 - Wall Decorations and Special Requests
|
| 383 |
with gr.Row(elem_classes="wall-decorations-row"):
|
|
|
|
| 391 |
with gr.Column():
|
| 392 |
with gr.Row():
|
| 393 |
art_print_enable = gr.Checkbox(label="Add Artwork", value=False)
|
| 394 |
+
art_print_color = gr.Dropdown(
|
| 395 |
choices=[
|
| 396 |
"None", "Classic Black & White", "Vibrant Colors",
|
| 397 |
"Single Color", "Soft Colors", "Modern Abstract",
|
|
|
|
| 402 |
],
|
| 403 |
label="Art Style",
|
| 404 |
value="None"
|
| 405 |
+
)
|
| 406 |
+
art_print_size = gr.Dropdown(
|
| 407 |
choices=[
|
| 408 |
"None", "Modest", "Standard", "Statement", "Oversized",
|
| 409 |
"Gallery Wall", "Diptych", "Triptych", "Mini Series",
|
|
|
|
| 415 |
|
| 416 |
# Mirror
|
| 417 |
with gr.Column():
|
| 418 |
+
with gr.Row():
|
| 419 |
mirror_enable = gr.Checkbox(label="Add Mirror", value=False)
|
| 420 |
+
mirror_frame = gr.Dropdown(
|
| 421 |
choices=[
|
| 422 |
"None", "Gold", "Silver", "Black", "White", "Wood",
|
| 423 |
"Brass", "Bronze", "Copper", "Chrome", "Antique Gold",
|
|
|
|
| 426 |
],
|
| 427 |
label="Frame Style",
|
| 428 |
value="None"
|
| 429 |
+
)
|
| 430 |
+
mirror_size = gr.Dropdown(
|
| 431 |
choices=[
|
| 432 |
"Small", "Medium", "Large", "Full Length",
|
| 433 |
"Oversized", "Double Width", "Floor Mirror",
|
|
|
|
| 443 |
with gr.Column():
|
| 444 |
with gr.Row():
|
| 445 |
sconce_enable = gr.Checkbox(label="Add Wall Sconce", value=False)
|
| 446 |
+
sconce_color = gr.Dropdown(
|
| 447 |
choices=[
|
| 448 |
"None", "Black", "Gold", "Silver", "Bronze", "White",
|
| 449 |
"Brass", "Copper", "Chrome", "Antique Brass",
|
|
|
|
| 453 |
],
|
| 454 |
label="Sconce Color",
|
| 455 |
value="None"
|
| 456 |
+
)
|
| 457 |
+
sconce_style = gr.Dropdown(
|
| 458 |
choices=[
|
| 459 |
"Modern", "Traditional", "Industrial", "Art Deco",
|
| 460 |
"Minimalist", "Vintage", "Contemporary", "Rustic",
|
|
|
|
| 468 |
|
| 469 |
# Floating Shelves
|
| 470 |
with gr.Column():
|
| 471 |
+
with gr.Row():
|
| 472 |
shelf_enable = gr.Checkbox(label="Add Floating Shelves", value=False)
|
| 473 |
+
shelf_color = gr.Dropdown(
|
| 474 |
choices=[
|
| 475 |
"None", "White", "Black", "Natural Wood", "Glass",
|
| 476 |
"Dark Wood", "Light Wood", "Metal", "Gold", "Silver",
|
|
|
|
| 480 |
],
|
| 481 |
label="Shelf Material",
|
| 482 |
value="None"
|
| 483 |
+
)
|
| 484 |
+
shelf_size = gr.Dropdown(
|
| 485 |
choices=[
|
| 486 |
"Small", "Medium", "Large", "Set of 3",
|
| 487 |
"Extra Long", "Corner Set", "Asymmetric Set",
|
|
|
|
| 490 |
],
|
| 491 |
label="Shelf Size",
|
| 492 |
value="Medium"
|
| 493 |
+
)
|
| 494 |
|
| 495 |
+
# Plants
|
| 496 |
with gr.Column():
|
| 497 |
+
with gr.Row():
|
| 498 |
plants_enable = gr.Checkbox(label="Add Plants", value=False)
|
| 499 |
+
plants_type = gr.Dropdown(
|
| 500 |
choices=[
|
| 501 |
"None", "Hanging Plants", "Vertical Garden",
|
| 502 |
"Plant Shelf", "Single Plant", "Climbing Vines",
|
|
|
|
| 507 |
],
|
| 508 |
label="Plant Type",
|
| 509 |
value="None"
|
| 510 |
+
)
|
| 511 |
+
plants_size = gr.Dropdown(
|
| 512 |
choices=[
|
| 513 |
"Small", "Medium", "Large", "Mixed Sizes",
|
| 514 |
"Full Wall", "Statement Piece", "Compact",
|
|
|
|
| 523 |
with gr.Column(scale=1):
|
| 524 |
with gr.Group():
|
| 525 |
gr.Markdown("## ✨ Special Requests")
|
| 526 |
+
input_text = gr.Textbox(
|
| 527 |
label="Additional Details",
|
| 528 |
placeholder="Add any special requests or details here...",
|
| 529 |
lines=3
|
|
|
|
| 541 |
step=1,
|
| 542 |
label="Quality Steps"
|
| 543 |
)
|
| 544 |
+
guidance_scale = gr.Slider(
|
| 545 |
minimum=1,
|
| 546 |
maximum=20,
|
| 547 |
value=7.5,
|
| 548 |
step=0.1,
|
| 549 |
label="Design Freedom"
|
| 550 |
+
)
|
| 551 |
+
strength = gr.Slider(
|
| 552 |
minimum=0.1,
|
| 553 |
maximum=1.0,
|
| 554 |
value=0.75,
|
|
|
|
| 568 |
)
|
| 569 |
|
| 570 |
# Row 4 - Current Prompts
|
| 571 |
+
with gr.Row():
|
| 572 |
with gr.Group():
|
| 573 |
gr.Markdown("## 📝 Current Prompts")
|
| 574 |
prompt_display = gr.TextArea(
|
|
|
|
| 882 |
is_test_mode = "--test" in sys.argv
|
| 883 |
|
| 884 |
if is_test_mode:
|
| 885 |
+
print("Starting in TEST mode...")
|
| 886 |
from mock_model import MockDesignModel
|
| 887 |
+
model = MockDesignModel()
|
| 888 |
else:
|
| 889 |
print("Starting in PRODUCTION mode...")
|
| 890 |
from prod_model import ProductionDesignModel
|
prod_model.py
CHANGED
|
@@ -5,11 +5,13 @@ from typing import List
|
|
| 5 |
import random
|
| 6 |
import time
|
| 7 |
import torch
|
| 8 |
-
from diffusers import
|
| 9 |
-
from
|
|
|
|
| 10 |
import logging
|
| 11 |
import os
|
| 12 |
from datetime import datetime
|
|
|
|
| 13 |
|
| 14 |
# Set up logging
|
| 15 |
log_dir = "logs"
|
|
@@ -27,158 +29,217 @@ logging.basicConfig(
|
|
| 27 |
|
| 28 |
class ProductionDesignModel(DesignModel):
|
| 29 |
def __init__(self):
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
try:
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
self.model_id = "stabilityai/stable-diffusion-2-1"
|
| 36 |
-
self.tokenizer_id = "openai/clip-vit-large-patch14" # Correct tokenizer for SD 2.1
|
| 37 |
-
logging.info(f"Loading model: {self.model_id}")
|
| 38 |
-
logging.info(f"Loading tokenizer: {self.tokenizer_id}")
|
| 39 |
-
|
| 40 |
-
# Initialize the pipeline with error handling
|
| 41 |
-
try:
|
| 42 |
-
self.pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
|
| 43 |
-
self.model_id,
|
| 44 |
-
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32,
|
| 45 |
-
safety_checker=None # Disable safety checker for performance
|
| 46 |
-
).to(self.device)
|
| 47 |
-
|
| 48 |
-
# Enable optimizations
|
| 49 |
-
self.pipe.enable_attention_slicing()
|
| 50 |
-
if self.device == "cuda":
|
| 51 |
-
self.pipe.enable_model_cpu_offload()
|
| 52 |
-
self.pipe.enable_vae_slicing()
|
| 53 |
-
|
| 54 |
-
logging.info("Model loaded successfully")
|
| 55 |
-
|
| 56 |
-
except Exception as e:
|
| 57 |
-
logging.error(f"Error loading model: {e}")
|
| 58 |
-
raise
|
| 59 |
-
|
| 60 |
-
# Initialize tokenizer with correct path
|
| 61 |
-
try:
|
| 62 |
-
self.tokenizer = CLIPTokenizer.from_pretrained(self.tokenizer_id)
|
| 63 |
-
logging.info("Tokenizer loaded successfully")
|
| 64 |
-
except Exception as e:
|
| 65 |
-
logging.error(f"Error loading tokenizer: {e}")
|
| 66 |
-
raise
|
| 67 |
-
|
| 68 |
-
# Set default prompts
|
| 69 |
-
self.neg_prompt = "blurry, low quality, distorted, deformed, disfigured, watermark, text, bad proportions, duplicate, double, multiple, broken, cropped"
|
| 70 |
-
self.additional_quality_suffix = "interior design, 4K, high resolution, photorealistic"
|
| 71 |
-
|
| 72 |
except Exception as e:
|
| 73 |
-
logging.error(f"Error
|
| 74 |
raise
|
| 75 |
|
| 76 |
-
def
|
| 77 |
-
"""
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
|
| 90 |
-
|
| 91 |
-
logging.error(f"Error preparing prompt: {e}")
|
| 92 |
-
return prompt # Return original prompt if processing fails
|
| 93 |
|
| 94 |
-
def
|
| 95 |
-
"""
|
| 96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
try:
|
| 98 |
-
#
|
| 99 |
-
logging.info(f"Generating {num_variations} variations with parameters: {kwargs}")
|
| 100 |
-
|
| 101 |
-
# Get parameters from kwargs with defaults
|
| 102 |
-
prompt = kwargs.get('prompt', '')
|
| 103 |
-
num_steps = int(kwargs.get('num_steps', 50))
|
| 104 |
-
guidance_scale = float(kwargs.get('guidance_scale', 7.5))
|
| 105 |
-
strength = float(kwargs.get('strength', 0.75))
|
| 106 |
-
|
| 107 |
-
# Handle seed properly
|
| 108 |
seed_param = kwargs.get('seed')
|
| 109 |
base_seed = int(time.time()) if seed_param is None else int(seed_param)
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
# Parameter validation
|
| 113 |
-
num_steps = max(20, min(100, num_steps))
|
| 114 |
-
guidance_scale = max(1, min(20, guidance_scale))
|
| 115 |
-
strength = max(0.1, min(1.0, strength))
|
| 116 |
-
|
| 117 |
-
# Log validated parameters
|
| 118 |
-
logging.info(f"Validated parameters: steps={num_steps}, guidance={guidance_scale}, strength={strength}")
|
| 119 |
|
| 120 |
-
#
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
|
| 127 |
-
#
|
| 128 |
-
|
| 129 |
-
image = image.convert("RGB")
|
| 130 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
# Generate variations
|
| 132 |
variations = []
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
for i, seed in enumerate(seeds):
|
| 136 |
try:
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
# Generate the image
|
| 141 |
-
output = self.pipe(
|
| 142 |
-
prompt=full_prompt,
|
| 143 |
negative_prompt=self.neg_prompt,
|
| 144 |
-
image=image,
|
| 145 |
num_inference_steps=num_steps,
|
| 146 |
-
guidance_scale=guidance_scale,
|
| 147 |
strength=strength,
|
| 148 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
).images[0]
|
| 150 |
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
logging.info(f"Generated variation {i+1}/{num_variations} in {variation_time:.2f}s")
|
| 155 |
|
| 156 |
except Exception as e:
|
| 157 |
-
logging.error(f"Error generating variation {i
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
return variations
|
| 165 |
-
|
| 166 |
except Exception as e:
|
| 167 |
logging.error(f"Error in generate_design: {e}")
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
return [np.array(image.convert('RGB'))]
|
| 171 |
-
|
| 172 |
-
finally:
|
| 173 |
-
if self.device == "cuda":
|
| 174 |
-
torch.cuda.empty_cache()
|
| 175 |
-
logging.info("Cleared CUDA cache")
|
| 176 |
-
|
| 177 |
def __del__(self):
|
| 178 |
"""Cleanup when the model is deleted"""
|
| 179 |
-
|
| 180 |
-
if self.device == "cuda":
|
| 181 |
-
torch.cuda.empty_cache()
|
| 182 |
-
logging.info("Final CUDA cache cleanup")
|
| 183 |
-
except:
|
| 184 |
-
pass
|
|
|
|
| 5 |
import random
|
| 6 |
import time
|
| 7 |
import torch
|
| 8 |
+
from diffusers.pipelines.controlnet import StableDiffusionControlNetInpaintPipeline
|
| 9 |
+
from diffusers import ControlNetModel, UniPCMultistepScheduler, AutoPipelineForText2Image
|
| 10 |
+
from transformers import AutoImageProcessor, UperNetForSemanticSegmentation, AutoModelForDepthEstimation
|
| 11 |
import logging
|
| 12 |
import os
|
| 13 |
from datetime import datetime
|
| 14 |
+
import gc
|
| 15 |
|
| 16 |
# Set up logging
|
| 17 |
log_dir = "logs"
|
|
|
|
| 29 |
|
| 30 |
class ProductionDesignModel(DesignModel):
|
| 31 |
def __init__(self):
|
| 32 |
+
"""Initialize the production model with advanced architecture"""
|
| 33 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 34 |
+
self.dtype = torch.float16 if self.device == "cuda" else torch.float32
|
| 35 |
+
|
| 36 |
+
# Setup logging
|
| 37 |
+
logging.basicConfig(filename=f'logs/prod_model_{time.strftime("%Y%m%d")}.log',
|
| 38 |
+
level=logging.INFO,
|
| 39 |
+
format='%(asctime)s - %(levelname)s - %(message)s')
|
| 40 |
+
|
| 41 |
+
self.seed = 323*111
|
| 42 |
+
self.neg_prompt = "window, door, low resolution, banner, logo, watermark, text, deformed, blurry, out of focus, surreal, ugly, beginner"
|
| 43 |
+
self.control_items = ["windowpane;window", "door;double;door"]
|
| 44 |
+
self.additional_quality_suffix = "interior design, 4K, high resolution, photorealistic"
|
| 45 |
+
|
| 46 |
try:
|
| 47 |
+
logging.info(f"Initializing models on {self.device} with {self.dtype}")
|
| 48 |
+
self._initialize_models()
|
| 49 |
+
logging.info("Models initialized successfully")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
except Exception as e:
|
| 51 |
+
logging.error(f"Error initializing models: {e}")
|
| 52 |
raise
|
| 53 |
|
| 54 |
+
def _initialize_models(self):
|
| 55 |
+
"""Initialize all required models and pipelines"""
|
| 56 |
+
# Initialize ControlNet models
|
| 57 |
+
self.controlnet_depth = ControlNetModel.from_pretrained(
|
| 58 |
+
"controlnet_depth", torch_dtype=self.dtype, use_safetensors=True
|
| 59 |
+
)
|
| 60 |
+
self.controlnet_seg = ControlNetModel.from_pretrained(
|
| 61 |
+
"own_controlnet", torch_dtype=self.dtype, use_safetensors=True
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
# Initialize main pipeline
|
| 65 |
+
self.pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
|
| 66 |
+
"SG161222/Realistic_Vision_V5.1_noVAE",
|
| 67 |
+
controlnet=[self.controlnet_depth, self.controlnet_seg],
|
| 68 |
+
safety_checker=None,
|
| 69 |
+
torch_dtype=self.dtype
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
# Setup IP-Adapter
|
| 73 |
+
self.pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models",
|
| 74 |
+
weight_name="ip-adapter_sd15.bin")
|
| 75 |
+
self.pipe.set_ip_adapter_scale(0.4)
|
| 76 |
+
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
|
| 77 |
+
self.pipe = self.pipe.to(self.device)
|
| 78 |
+
|
| 79 |
+
# Initialize guide pipeline
|
| 80 |
+
self.guide_pipe = AutoPipelineForText2Image.from_pretrained(
|
| 81 |
+
"segmind/SSD-1B",
|
| 82 |
+
torch_dtype=self.dtype,
|
| 83 |
+
use_safetensors=True,
|
| 84 |
+
variant="fp16"
|
| 85 |
+
).to(self.device)
|
| 86 |
+
|
| 87 |
+
# Initialize segmentation and depth models
|
| 88 |
+
self.seg_processor, self.seg_model = self._init_segmentation()
|
| 89 |
+
self.depth_processor, self.depth_model = self._init_depth()
|
| 90 |
+
self.depth_model = self.depth_model.to(self.device)
|
| 91 |
+
|
| 92 |
+
def _init_segmentation(self):
|
| 93 |
+
"""Initialize segmentation models"""
|
| 94 |
+
processor = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-small")
|
| 95 |
+
model = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-small")
|
| 96 |
+
return processor, model
|
| 97 |
+
|
| 98 |
+
def _init_depth(self):
|
| 99 |
+
"""Initialize depth estimation models"""
|
| 100 |
+
processor = AutoImageProcessor.from_pretrained(
|
| 101 |
+
"LiheYoung/depth-anything-large-hf",
|
| 102 |
+
torch_dtype=self.dtype
|
| 103 |
+
)
|
| 104 |
+
model = AutoModelForDepthEstimation.from_pretrained(
|
| 105 |
+
"LiheYoung/depth-anything-large-hf",
|
| 106 |
+
torch_dtype=self.dtype
|
| 107 |
+
)
|
| 108 |
+
return processor, model
|
| 109 |
+
|
| 110 |
+
def _get_depth_map(self, image: Image.Image) -> Image.Image:
|
| 111 |
+
"""Generate depth map for input image"""
|
| 112 |
+
image_to_depth = self.depth_processor(images=image, return_tensors="pt").to(self.device)
|
| 113 |
+
with torch.inference_mode():
|
| 114 |
+
depth_map = self.depth_model(**image_to_depth).predicted_depth
|
| 115 |
+
|
| 116 |
+
width, height = image.size
|
| 117 |
+
depth_map = torch.nn.functional.interpolate(
|
| 118 |
+
depth_map.unsqueeze(1).float(),
|
| 119 |
+
size=(height, width),
|
| 120 |
+
mode="bicubic",
|
| 121 |
+
align_corners=False,
|
| 122 |
+
)
|
| 123 |
+
depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
|
| 124 |
+
depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
|
| 125 |
+
depth_map = (depth_map - depth_min) / (depth_max - depth_min)
|
| 126 |
+
image = torch.cat([depth_map] * 3, dim=1)
|
| 127 |
+
|
| 128 |
+
image = image.permute(0, 2, 3, 1).cpu().numpy()[0]
|
| 129 |
+
return Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8))
|
| 130 |
+
|
| 131 |
+
def _segment_image(self, image: Image.Image) -> Image.Image:
|
| 132 |
+
"""Generate segmentation map for input image"""
|
| 133 |
+
pixel_values = self.seg_processor(image, return_tensors="pt").pixel_values
|
| 134 |
+
with torch.inference_mode():
|
| 135 |
+
outputs = self.seg_model(pixel_values)
|
| 136 |
+
|
| 137 |
+
seg = self.seg_processor.post_process_semantic_segmentation(
|
| 138 |
+
outputs, target_sizes=[image.size[::-1]])[0]
|
| 139 |
+
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8)
|
| 140 |
+
|
| 141 |
+
# You'll need to implement the palette mapping here
|
| 142 |
+
# This is a placeholder - you should implement proper color mapping
|
| 143 |
+
for label in range(seg.max() + 1):
|
| 144 |
+
color_seg[seg == label, :] = [label * 30 % 255] * 3
|
| 145 |
|
| 146 |
+
return Image.fromarray(color_seg).convert('RGB')
|
|
|
|
|
|
|
| 147 |
|
| 148 |
+
def _resize_image(self, image: Image.Image, target_size: int) -> Image.Image:
|
| 149 |
+
"""Resize image while maintaining aspect ratio"""
|
| 150 |
+
width, height = image.size
|
| 151 |
+
if width > height:
|
| 152 |
+
new_width = target_size
|
| 153 |
+
new_height = int(height * (target_size / width))
|
| 154 |
+
else:
|
| 155 |
+
new_height = target_size
|
| 156 |
+
new_width = int(width * (target_size / height))
|
| 157 |
+
return image.resize((new_width, new_height), Image.LANCZOS)
|
| 158 |
+
|
| 159 |
+
def _flush(self):
|
| 160 |
+
"""Clear CUDA cache"""
|
| 161 |
+
gc.collect()
|
| 162 |
+
if torch.cuda.is_available():
|
| 163 |
+
torch.cuda.empty_cache()
|
| 164 |
+
|
| 165 |
+
def generate_design(self, image: Image.Image, prompt: str, **kwargs) -> List[Image.Image]:
|
| 166 |
+
"""
|
| 167 |
+
Generate design variations based on input image and prompt
|
| 168 |
+
"""
|
| 169 |
try:
|
| 170 |
+
# Set seed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
seed_param = kwargs.get('seed')
|
| 172 |
base_seed = int(time.time()) if seed_param is None else int(seed_param)
|
| 173 |
+
self.generator = torch.Generator(device=self.device).manual_seed(base_seed)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
|
| 175 |
+
# Get parameters
|
| 176 |
+
num_variations = kwargs.get('num_variations', 1)
|
| 177 |
+
guidance_scale = float(kwargs.get('guidance_scale', 10.0))
|
| 178 |
+
num_steps = int(kwargs.get('num_steps', 50))
|
| 179 |
+
strength = float(kwargs.get('strength', 0.9))
|
| 180 |
+
img_size = int(kwargs.get('img_size', 768))
|
| 181 |
+
|
| 182 |
+
logging.info(f"Generating design with parameters: guidance_scale={guidance_scale}, "
|
| 183 |
+
f"num_steps={num_steps}, strength={strength}, img_size={img_size}")
|
| 184 |
+
|
| 185 |
+
# Prepare prompt
|
| 186 |
+
pos_prompt = f"{prompt}, {self.additional_quality_suffix}"
|
| 187 |
+
|
| 188 |
+
# Process input image
|
| 189 |
+
orig_size = image.size
|
| 190 |
+
input_image = self._resize_image(image, img_size)
|
| 191 |
|
| 192 |
+
# Generate depth map
|
| 193 |
+
depth_map = self._get_depth_map(input_image)
|
|
|
|
| 194 |
|
| 195 |
+
# Generate segmentation
|
| 196 |
+
seg_map = self._segment_image(input_image)
|
| 197 |
+
|
| 198 |
+
# Generate IP-adapter reference image
|
| 199 |
+
self._flush()
|
| 200 |
+
ip_image = self.guide_pipe(
|
| 201 |
+
pos_prompt,
|
| 202 |
+
num_inference_steps=num_steps,
|
| 203 |
+
negative_prompt=self.neg_prompt,
|
| 204 |
+
generator=self.generator
|
| 205 |
+
).images[0]
|
| 206 |
+
|
| 207 |
# Generate variations
|
| 208 |
variations = []
|
| 209 |
+
for i in range(num_variations):
|
|
|
|
|
|
|
| 210 |
try:
|
| 211 |
+
self._flush()
|
| 212 |
+
variation = self.pipe(
|
| 213 |
+
prompt=pos_prompt,
|
|
|
|
|
|
|
|
|
|
| 214 |
negative_prompt=self.neg_prompt,
|
|
|
|
| 215 |
num_inference_steps=num_steps,
|
|
|
|
| 216 |
strength=strength,
|
| 217 |
+
guidance_scale=guidance_scale,
|
| 218 |
+
generator=self.generator,
|
| 219 |
+
image=input_image,
|
| 220 |
+
ip_adapter_image=ip_image,
|
| 221 |
+
control_image=[depth_map, seg_map],
|
| 222 |
+
controlnet_conditioning_scale=[0.5, 0.5]
|
| 223 |
).images[0]
|
| 224 |
|
| 225 |
+
# Resize back to original size
|
| 226 |
+
variation = variation.resize(orig_size, Image.LANCZOS)
|
| 227 |
+
variations.append(variation)
|
|
|
|
| 228 |
|
| 229 |
except Exception as e:
|
| 230 |
+
logging.error(f"Error generating variation {i}: {e}")
|
| 231 |
+
continue
|
| 232 |
+
|
| 233 |
+
if not variations:
|
| 234 |
+
logging.warning("No variations were generated successfully")
|
| 235 |
+
return [image] # Return original image if no variations were generated
|
| 236 |
+
|
| 237 |
return variations
|
| 238 |
+
|
| 239 |
except Exception as e:
|
| 240 |
logging.error(f"Error in generate_design: {e}")
|
| 241 |
+
return [image] # Return original image in case of error
|
| 242 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 243 |
def __del__(self):
|
| 244 |
"""Cleanup when the model is deleted"""
|
| 245 |
+
self._flush()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
|
@@ -2,32 +2,24 @@
|
|
| 2 |
gradio>=3.50.2
|
| 3 |
Pillow>=10.0.0
|
| 4 |
numpy>=1.24.0
|
| 5 |
-
|
| 6 |
-
# Model dependencies
|
| 7 |
torch>=2.0.0
|
| 8 |
diffusers>=0.21.0
|
| 9 |
transformers>=4.31.0
|
| 10 |
accelerate>=0.21.0
|
|
|
|
| 11 |
|
| 12 |
# Google Drive integration
|
| 13 |
-
google-auth>=2.22.0
|
| 14 |
-
google-auth-oauthlib>=1.0.0
|
| 15 |
google-api-python-client>=2.95.0
|
|
|
|
|
|
|
| 16 |
|
| 17 |
# Utility packages
|
| 18 |
python-dateutil>=2.8.2
|
| 19 |
-
tqdm>=4.65.0
|
| 20 |
requests>=2.31.0
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
opencv-python>=4.8.0 # For image processing
|
| 24 |
-
safetensors>=0.3.1 # For faster model loading
|
| 25 |
|
| 26 |
# Development tools
|
| 27 |
pytest>=7.4.0
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
isort>=5.12.0
|
| 31 |
-
|
| 32 |
-
# Testing dependencies
|
| 33 |
-
pytest-mock>=3.11.1
|
|
|
|
| 2 |
gradio>=3.50.2
|
| 3 |
Pillow>=10.0.0
|
| 4 |
numpy>=1.24.0
|
|
|
|
|
|
|
| 5 |
torch>=2.0.0
|
| 6 |
diffusers>=0.21.0
|
| 7 |
transformers>=4.31.0
|
| 8 |
accelerate>=0.21.0
|
| 9 |
+
safetensors>=0.3.1
|
| 10 |
|
| 11 |
# Google Drive integration
|
|
|
|
|
|
|
| 12 |
google-api-python-client>=2.95.0
|
| 13 |
+
google-auth-oauthlib>=1.0.0
|
| 14 |
+
google-auth>=2.22.0
|
| 15 |
|
| 16 |
# Utility packages
|
| 17 |
python-dateutil>=2.8.2
|
|
|
|
| 18 |
requests>=2.31.0
|
| 19 |
+
tqdm>=4.65.0
|
| 20 |
+
opencv-python>=4.8.0
|
|
|
|
|
|
|
| 21 |
|
| 22 |
# Development tools
|
| 23 |
pytest>=7.4.0
|
| 24 |
+
pytest-mock>=3.11.1
|
| 25 |
+
mock>=5.1.0
|
|
|
|
|
|
|
|
|
|
|
|