Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,55 @@
|
|
1 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
|
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
-
demo = gr.Interface(fn=
|
9 |
|
10 |
-
demo.launch()
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModel
|
2 |
+
from datasets import load_dataset
|
3 |
+
import torch
|
4 |
+
|
5 |
+
model_ckpt = "sentence-transformers/multi-qa-mpnet-base-dot-v1"
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained(model_ckpt)
|
7 |
+
model = AutoModel.from_pretrained(model_ckpt)
|
8 |
+
|
9 |
+
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
10 |
+
model.to(device)
|
11 |
+
|
12 |
+
def cls_pooling(model_output):
|
13 |
+
return model_output.last_hidden_state[:, 0]
|
14 |
+
|
15 |
+
def get_embeddings(text_list):
|
16 |
+
encoded_input = tokenizer(
|
17 |
+
text_list, padding=True, truncation=True, return_tensors="pt"
|
18 |
+
)
|
19 |
+
encoded_input = {k: v.to(device) for k, v in encoded_input.items()}
|
20 |
+
model_output = model(**encoded_input)
|
21 |
+
return cls_pooling(model_output)
|
22 |
+
|
23 |
+
|
24 |
+
embeddings_doc_dataset = load_dataset("fashxp/pimcore-docs-embeddings")
|
25 |
+
embeddings_doc_dataset = embeddings_doc_dataset['train']
|
26 |
+
embeddings_doc_dataset.add_faiss_index(column="embeddings")
|
27 |
+
|
28 |
+
import pandas as pd
|
29 |
|
30 |
+
def find_in_docs(question):
|
31 |
+
question_embedding = get_embeddings([question]).cpu().detach().numpy()
|
32 |
+
question_embedding.shape
|
33 |
|
34 |
+
scores, samples = embeddings_doc_dataset.get_nearest_examples(
|
35 |
+
"embeddings", question_embedding, k=10
|
36 |
+
)
|
37 |
|
38 |
+
samples_df = pd.DataFrame.from_dict(samples)
|
39 |
+
samples_df["scores"] = scores
|
40 |
+
samples_df.sort_values("scores", ascending=False, inplace=True)
|
41 |
+
|
42 |
+
result = ''
|
43 |
+
|
44 |
+
for _, row in samples_df.iterrows():
|
45 |
+
result = result + f"HEADING: {row.heading}\n" + f"SCORE: {row.scores}\n" + f"URL: {row.url}\n" + ("=" * 50) + "\n\n"
|
46 |
+
|
47 |
+
return result
|
48 |
+
|
49 |
+
|
50 |
+
|
51 |
+
import gradio as gr
|
52 |
|
53 |
+
demo = gr.Interface(fn=find_in_docs, inputs="text", outputs="text")
|
54 |
|
55 |
+
demo.launch(share=True)
|