gecko / model /processing_gecko.py
farrosalferro24's picture
Update model/processing_gecko.py
75fa56b verified
import math
from typing import List, Optional, Union, Dict
import torch
from PIL import Image
import logging
import os
import json
import re
from transformers.feature_extraction_sequence_utils import BatchFeature
from transformers.image_utils import ImageInput
from transformers import ProcessorMixin, ImageProcessingMixin, AutoImageProcessor, AutoTokenizer, AutoProcessor
from transformers.tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from transformers.utils import TensorType
from transformers.processing_utils import transformers_module
from transformers.utils.hub import is_remote_url, download_url, cached_file, is_offline_mode
from transformers.utils import IMAGE_PROCESSOR_NAME
logger = logging.getLogger(__name__)
class GeckoProcessor(ProcessorMixin):
attributes = ["image_processor", "tokenizer"]
image_processor_class = ("CLIPImageProcessor", "SiglipImageProcessor")
tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast", "PreTrainedTokenizerFast")
def __init__(self, image_processor=None, tokenizer=None, use_keyword=False, crop_size=336, cropping_method='dynamic', **kwargs):
super().__init__(image_processor, tokenizer)
self.crop_size = crop_size if crop_size is not None else int(image_processor.size['height'])
self.use_keyword = use_keyword
self.image_token_index = None
self.cropping_method = cropping_method
self.load_clip_tokenizer()
def load_clip_tokenizer(self):
if 'clip' in self.image_processor.image_processor_type.lower():
self.clip_tokenizer = AutoTokenizer.from_pretrained('openai/clip-vit-large-patch14-336')
elif 'siglip' in self.image_processor.image_processor_type.lower():
self.clip_tokenizer = AutoTokenizer.from_pretrained("google/siglip-so400m-patch14-384")
else:
raise ValueError(f"Invalid image processor type: {self.image_processor.image_processor_type}")
def process_images(self, images: List[Image.Image]):
# create documentation
"""
Parameters:
images: List[Image.Image]
List of PIL images to be processed
Returns:
Dict[str, torch.Tensor]:
pixel_values: List[torch.Tensor]
Pixel values of the images. Has shape (num_images, num_patches, num_channels, height, width)
coords: List[List[List[int]]]
Coordinates of the cropped images. Has shape (num_images, num_patches, 2)
"""
pixel_values = []
coords = []
for image in images:
outputs, coord = self.dynamic_preprocess(image)
pixel_values.append(outputs)
coords.append(coord)
return {"pixel_values": pixel_values, "coords": coords}
def find_closest_aspect_ratio(self, aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(self, image):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
if self.cropping_method == 'dynamic':
max_num = math.ceil(orig_width / self.crop_size) * math.ceil(orig_height / self.crop_size)
# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(1, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= 1)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = self.find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, self.crop_size)
# if target_aspect_ratio[0] * target_aspect_ratio[1] <= 25:
# target_aspect_ratio = (int(1.5 * target_aspect_ratio[0]), int(1.5 * target_aspect_ratio[1]))
elif self.cropping_method == 'naive':
target_aspect_ratio = (orig_width // self.crop_size, orig_height // self.crop_size)
# print(target_aspect_ratio)
# if target_aspect_ratio[0] * target_aspect_ratio[1] <= 25:
# target_aspect_ratio = (2 * orig_width // self.crop_size, 2 * orig_height // self.crop_size)
# print(target_aspect_ratio)
else:
raise ValueError(f"Invalid cropping method: {self.cropping_method}")
# calculate the target width and height
target_width = self.crop_size * target_aspect_ratio[0]
target_height = self.crop_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# add whole image
processed_images = []
processed_images.append(image.resize((self.crop_size, self.crop_size)))
coords = []
if blocks == 1:
return self.image_processor(images=processed_images, return_tensors='pt')['pixel_values'], coords
# resize the image
resized_img = image.resize((target_width, target_height))
for i in range(blocks):
x0 = (i % (target_width // self.crop_size))
y0 = (i // (target_width // self.crop_size))
x1 = ((i % (target_width // self.crop_size)) + 1)
y1 = ((i // (target_width // self.crop_size)) + 1)
box = (
x0 * self.crop_size,
y0 * self.crop_size,
x1 * self.crop_size,
y1 * self.crop_size
)
split_img = resized_img.crop(box)
processed_images.append(split_img)
coords.append([x0, y0])
# box = (
# (i % (target_width // self.crop_size)) * self.crop_size,
# (i // (target_width // self.crop_size)) * self.crop_size,
# ((i % (target_width // self.crop_size)) + 1) * self.crop_size,
# ((i // (target_width // self.crop_size)) + 1) * self.crop_size
# )
# split the image
assert len(processed_images) == blocks + 1
return self.image_processor(images=processed_images, return_tensors='pt')['pixel_values'], coords
def preprocess_interleaved_images_and_text(
self,
text,
images=None,
):
"""
Args:
text (`str`, `List[str]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
text can contain <image> tokens as the placeholder for the image(s) to be inserted.
images (`PIL.Image.Image`, `List[PIL.Image.Image]`, `List[List[PIL.Image.Image]]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
number of channels, H and W are image height and width.
the number of the images should match the number of <image> tokens in the text.
"""
assert text is not None, "text cannot be None."
if images is not None:
if isinstance(images, Image.Image):
images = [images]
if isinstance(images, list) and isinstance(images[0], Image.Image):
if isinstance(text, str):
images = [images]
elif isinstance(text, list):
if len(text) != len(images):
raise ValueError("Invalid input text. Number of texts does not match number of images.")
images = [[image] for image in images]
if isinstance(text, str):
num_images = len(images[0])
num_image_tokens = text.count("<image>")
if num_image_tokens < num_images:
# prepend empty image tokens to text
if "USER:" in text:
text = text.replace("USER:", "USER:" + "<image>" * (num_images - num_image_tokens), 1)
elif "Human:" in text:
text = text.replace("Human:", "Human:" + "<image>" * (num_images - num_image_tokens), 1)
elif "HUMAN:" in text:
text = text.replace("HUMAN:", "HUMAN:" + "<image>" * (num_images - num_image_tokens), 1)
else:
text = "<image>" * (num_images - num_image_tokens) + text
# logger.warning("Image Tokens <image> are not provided in the text. Automatically prepending them before the text. This might cause model to behave unexpectedly.")
elif num_image_tokens > num_images:
text = text.split("<image>")
for i, t in enumerate(text):
if i < num_images:
text[i] = t + "<image>"
text = "".join(text)
logger.warning(f"Number of <image> tokens: {num_image_tokens} exceeds number of images: {num_images}. Automatically removing extra tokens at the end of the text.")
# raise ValueError("Invalid input text. Number of <image> tokens exceeds number of images.")
texts = [text]
elif isinstance(text, list):
if not isinstance(text[0], str):
raise ValueError("Invalid input text. Each element of text must be a string.")
for i, t in enumerate(text):
num_image_tokens = t.count("<image>")
num_images = len(images[i])
if num_image_tokens < num_images:
# prepend empty image tokens to text
if "USER:" in t:
t = t.replace("USER:", "USER:" + "<image>" * (num_images - num_image_tokens), 1)
elif "Human:" in t:
t = t.replace("Human:", "Human:" + "<image>" * (num_images - num_image_tokens), 1)
elif "HUMAN:" in t:
t = t.replace("HUMAN:", "HUMAN:" + "<image>" * (num_images - num_image_tokens), 1)
else:
t = "<image>" * (num_images - num_image_tokens) + t
# logger.warning("Image Tokens <image> are not provided in the text. Automatically prepending them before the text. This might cause model to behave unexpectedly.")
elif num_image_tokens > num_images:
t = t.split("<image>")
for j, s in enumerate(t):
if j < num_images:
t[j] = s + "<image>"
t = "".join(t)
logger.warning(f"Number of <image> tokens: {num_image_tokens} exceeds number of images: {num_images}. Automatically removing extra tokens at the end of the text.")
# raise ValueError("Invalid input text. Number of <image> tokens exceeds number of images.")
text[i] = t
texts = text
else:
raise ValueError("Invalid input text. text must be a string or a list of strings.")
assert all([t.count("<image>") == len(images_per_text) for t, images_per_text in zip(texts, images)]), "Number of <image> tokens in text does not match number of images."
# add image denotation in text before each <image> as "(image {i}: <image>)"
for i, t in enumerate(texts):
for j in range(len(images[i])):
t = t.replace("<image>", f"(image {j+1}: <Image><IMAGE></Image>)", 1)
t = t.replace("<IMAGE>", "<image>")
texts[i] = t
else:
if isinstance(text, str):
texts = [text]
elif isinstance(text, list):
if not isinstance(text[0], str):
raise ValueError("Invalid input text. Each element of text must be a string.")
texts = text
else:
raise ValueError("Invalid input text. text must be a string or a list of strings.")
return texts, images
def __call__(
self,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
keywords_text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
images: ImageInput = None,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length=None,
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
add_image_ids: bool = True,
cropping_method: str = None,
) -> BatchFeature:
"""
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
of the above two methods for more information.
Args:
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
number of channels, H and W are image height and width.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding
index) among:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
max_length (`int`, *optional*):
Maximum length of the returned list and optionally padding length (see above).
truncation (`bool`, *optional*):
Activates truncation to cut input sequences longer than `max_length` to `max_length`.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. Have shape of (num_images, num_patches, num_tokens, embed_dim)
- **coords** -- Coordinates of the cropped images. Returned when `images` is not `None`. Have shape of (num_images, num_patches, 2)
"""
if cropping_method is not None:
self.cropping_method = cropping_method
if not self.image_token_index:
self.image_token_index = self.tokenizer.convert_tokens_to_ids("<image>")
if add_image_ids:
text, images = self.preprocess_interleaved_images_and_text(text, images)
text_inputs = self.tokenizer(
text,
padding=padding,
truncation=truncation,
max_length=max_length,
return_tensors=return_tensors,
)
if self.use_keyword and keywords_text is not None:
keywords_prompt_input_ids = self.tokenizer(keywords_text,
padding=padding,
truncation=truncation,
max_length=max_length,
return_tensors=return_tensors)['input_ids']
else:
keywords_prompt_input_ids = None
if images is not None:
input_ids = text_inputs["input_ids"]
num_image_tokens = torch.sum(input_ids == self.image_token_index, dim=-1)
for i, num_image_token in enumerate(num_image_tokens):
if num_image_token < len(images[i]):
images[i] = images[i][:num_image_token]
print(f"{len(images[i]) - num_image_token} ({len(images[i])} in total) image tokens in the text are truncated due to the max sequence length; removing the extra images.")
# flatten images
images = [image for images_per_text in images for image in images_per_text]
image_inputs = self.process_images(images)
else:
image_inputs = {"pixel_values": None, "coords": None}
return BatchFeature(data={**text_inputs, **image_inputs, "keyword_prompt_input_ids": keywords_prompt_input_ids})
def batch_decode(self, *args, **kwargs):
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
return self.tokenizer.decode(*args, **kwargs)
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
def _right_pad_inputs_with_attention_mask(self, model_inputs: List[Dict]):
results = {}
assert len(model_inputs) == 1, "This method only supports a single input, but get {} inputs".format(len(model_inputs))
for k in model_inputs[0].keys():
if k == "pixel_values" or k == "coords":
results[k] = model_inputs[0][k] if model_inputs[0][k] is not None else None
else:
results[k] = torch.cat([model_inputs[0][k]], dim=0) if model_inputs[0][k] is not None else None
return results
@classmethod
def _get_arguments_from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
args = []
cache_dir = kwargs.pop("cache_dir", None)
force_download = kwargs.pop("force_download", False)
resume_download = kwargs.pop("resume_download", False)
proxies = kwargs.pop("proxies", None)
token = kwargs.pop("token", None)
local_files_only = kwargs.pop("local_files_only", False)
revision = kwargs.pop("revision", None)
subfolder = kwargs.pop("subfolder", "")
from_pipeline = kwargs.pop("_from_pipeline", None)
from_auto_class = kwargs.pop("_from_auto", False)
user_agent = {"file_type": "processor", "from_auto_class": from_auto_class}
if from_pipeline is not None:
user_agent["using_pipeline"] = from_pipeline
if is_offline_mode() and not local_files_only:
logger.info("Offline mode: forcing local_files_only=True")
local_files_only = True
pretrained_model_name_or_path = str(pretrained_model_name_or_path)
is_local = os.path.isdir(pretrained_model_name_or_path)
if os.path.isdir(pretrained_model_name_or_path):
processor_file = os.path.join(pretrained_model_name_or_path, IMAGE_PROCESSOR_NAME)
if os.path.isfile(pretrained_model_name_or_path):
resolved_processor_file = pretrained_model_name_or_path
is_local = True
elif is_remote_url(pretrained_model_name_or_path):
processor_file = pretrained_model_name_or_path
resolved_processor_file = download_url(pretrained_model_name_or_path)
else:
processor_file = IMAGE_PROCESSOR_NAME
try:
# Load from local folder or from cache or download from model Hub and cache
resolved_processor_file = cached_file(
pretrained_model_name_or_path,
processor_file,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
local_files_only=local_files_only,
token=token,
user_agent=user_agent,
revision=revision,
subfolder=subfolder,
_raise_exceptions_for_missing_entries=True,
)
except EnvironmentError:
# Raise any environment error raise by `cached_file`. It will have a helpful error message adapted to
# the original exception.
raise
except Exception:
# For any other exception, we throw a generic error.
raise EnvironmentError(
f"Can't load processor for '{pretrained_model_name_or_path}'. If you were trying to load"
" it from 'https://huggingface.co/models', make sure you don't have a local directory with the"
f" same name. Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a"
f" directory containing a {IMAGE_PROCESSOR_NAME} file"
)
# Existing processors on the Hub created before #27761 being merged don't have `processor_config.json` (if not
# updated afterward), and we need to keep `from_pretrained` work. So here it fallbacks to the empty dict.
# (`cached_file` called using `_raise_exceptions_for_missing_entries=False` to avoid exception)
# However, for models added in the future, we won't get the expected error if this file is missing.
if resolved_processor_file is None:
image_processor_dict = {}
try:
# Load processor dict
with open(resolved_processor_file, "r", encoding="utf-8") as reader:
text = reader.read()
image_processor_dict = json.loads(text)
except json.JSONDecodeError:
raise EnvironmentError(
f"It looks like the config file at '{resolved_processor_file}' is not a valid JSON file."
)
for attribute_name in cls.attributes:
class_name = getattr(cls, f"{attribute_name}_class")
if isinstance(class_name, tuple):
if attribute_name == "tokenizer":
classes = tuple(getattr(transformers_module, n) if n is not None else None for n in class_name)
use_fast = kwargs.get("use_fast", True)
if use_fast and classes[1] is not None:
attribute_class = classes[1]
else:
attribute_class = classes[0]
elif attribute_name == "image_processor":
image_processor_type = image_processor_dict.get("image_processor_type", None)
if image_processor_type is not None:
assert image_processor_type in class_name, f"Invalid image processor type: {image_processor_type}"
attribute_class = getattr(transformers_module, image_processor_type)
else:
attribute_class = getattr(transformers_module, class_name[0])
else:
raise ValueError(f"Invalid attribute name: {attribute_name}")
else:
attribute_class = getattr(transformers_module, class_name)
args.append(attribute_class.from_pretrained(pretrained_model_name_or_path, **kwargs))
return args