Spaces:
Runtime error
Runtime error
import math | |
from typing import List, Optional, Union, Dict | |
import torch | |
from PIL import Image | |
import logging | |
import os | |
import json | |
import re | |
from transformers.feature_extraction_sequence_utils import BatchFeature | |
from transformers.image_utils import ImageInput | |
from transformers import ProcessorMixin, ImageProcessingMixin, AutoImageProcessor, AutoTokenizer, AutoProcessor | |
from transformers.tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy | |
from transformers.utils import TensorType | |
from transformers.processing_utils import transformers_module | |
from transformers.utils.hub import is_remote_url, download_url, cached_file, is_offline_mode | |
from transformers.utils import IMAGE_PROCESSOR_NAME | |
logger = logging.getLogger(__name__) | |
class GeckoProcessor(ProcessorMixin): | |
attributes = ["image_processor", "tokenizer"] | |
image_processor_class = ("CLIPImageProcessor", "SiglipImageProcessor") | |
tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast", "PreTrainedTokenizerFast") | |
def __init__(self, image_processor=None, tokenizer=None, use_keyword=False, crop_size=336, cropping_method='dynamic', **kwargs): | |
super().__init__(image_processor, tokenizer) | |
self.crop_size = crop_size if crop_size is not None else int(image_processor.size['height']) | |
self.use_keyword = use_keyword | |
self.image_token_index = None | |
self.cropping_method = cropping_method | |
self.load_clip_tokenizer() | |
def load_clip_tokenizer(self): | |
if 'clip' in self.image_processor.image_processor_type.lower(): | |
self.clip_tokenizer = AutoTokenizer.from_pretrained('openai/clip-vit-large-patch14-336') | |
elif 'siglip' in self.image_processor.image_processor_type.lower(): | |
self.clip_tokenizer = AutoTokenizer.from_pretrained("google/siglip-so400m-patch14-384") | |
else: | |
raise ValueError(f"Invalid image processor type: {self.image_processor.image_processor_type}") | |
def process_images(self, images: List[Image.Image]): | |
# create documentation | |
""" | |
Parameters: | |
images: List[Image.Image] | |
List of PIL images to be processed | |
Returns: | |
Dict[str, torch.Tensor]: | |
pixel_values: List[torch.Tensor] | |
Pixel values of the images. Has shape (num_images, num_patches, num_channels, height, width) | |
coords: List[List[List[int]]] | |
Coordinates of the cropped images. Has shape (num_images, num_patches, 2) | |
""" | |
pixel_values = [] | |
coords = [] | |
for image in images: | |
outputs, coord = self.dynamic_preprocess(image) | |
pixel_values.append(outputs) | |
coords.append(coord) | |
return {"pixel_values": pixel_values, "coords": coords} | |
def find_closest_aspect_ratio(self, aspect_ratio, target_ratios, width, height, image_size): | |
best_ratio_diff = float('inf') | |
best_ratio = (1, 1) | |
area = width * height | |
for ratio in target_ratios: | |
target_aspect_ratio = ratio[0] / ratio[1] | |
ratio_diff = abs(aspect_ratio - target_aspect_ratio) | |
if ratio_diff < best_ratio_diff: | |
best_ratio_diff = ratio_diff | |
best_ratio = ratio | |
elif ratio_diff == best_ratio_diff: | |
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: | |
best_ratio = ratio | |
return best_ratio | |
def dynamic_preprocess(self, image): | |
orig_width, orig_height = image.size | |
aspect_ratio = orig_width / orig_height | |
if self.cropping_method == 'dynamic': | |
max_num = math.ceil(orig_width / self.crop_size) * math.ceil(orig_height / self.crop_size) | |
# calculate the existing image aspect ratio | |
target_ratios = set( | |
(i, j) for n in range(1, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if | |
i * j <= max_num and i * j >= 1) | |
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) | |
# find the closest aspect ratio to the target | |
target_aspect_ratio = self.find_closest_aspect_ratio( | |
aspect_ratio, target_ratios, orig_width, orig_height, self.crop_size) | |
# if target_aspect_ratio[0] * target_aspect_ratio[1] <= 25: | |
# target_aspect_ratio = (int(1.5 * target_aspect_ratio[0]), int(1.5 * target_aspect_ratio[1])) | |
elif self.cropping_method == 'naive': | |
target_aspect_ratio = (orig_width // self.crop_size, orig_height // self.crop_size) | |
# print(target_aspect_ratio) | |
# if target_aspect_ratio[0] * target_aspect_ratio[1] <= 25: | |
# target_aspect_ratio = (2 * orig_width // self.crop_size, 2 * orig_height // self.crop_size) | |
# print(target_aspect_ratio) | |
else: | |
raise ValueError(f"Invalid cropping method: {self.cropping_method}") | |
# calculate the target width and height | |
target_width = self.crop_size * target_aspect_ratio[0] | |
target_height = self.crop_size * target_aspect_ratio[1] | |
blocks = target_aspect_ratio[0] * target_aspect_ratio[1] | |
# add whole image | |
processed_images = [] | |
processed_images.append(image.resize((self.crop_size, self.crop_size))) | |
coords = [] | |
if blocks == 1: | |
return self.image_processor(images=processed_images, return_tensors='pt')['pixel_values'], coords | |
# resize the image | |
resized_img = image.resize((target_width, target_height)) | |
for i in range(blocks): | |
x0 = (i % (target_width // self.crop_size)) | |
y0 = (i // (target_width // self.crop_size)) | |
x1 = ((i % (target_width // self.crop_size)) + 1) | |
y1 = ((i // (target_width // self.crop_size)) + 1) | |
box = ( | |
x0 * self.crop_size, | |
y0 * self.crop_size, | |
x1 * self.crop_size, | |
y1 * self.crop_size | |
) | |
split_img = resized_img.crop(box) | |
processed_images.append(split_img) | |
coords.append([x0, y0]) | |
# box = ( | |
# (i % (target_width // self.crop_size)) * self.crop_size, | |
# (i // (target_width // self.crop_size)) * self.crop_size, | |
# ((i % (target_width // self.crop_size)) + 1) * self.crop_size, | |
# ((i // (target_width // self.crop_size)) + 1) * self.crop_size | |
# ) | |
# split the image | |
assert len(processed_images) == blocks + 1 | |
return self.image_processor(images=processed_images, return_tensors='pt')['pixel_values'], coords | |
def preprocess_interleaved_images_and_text( | |
self, | |
text, | |
images=None, | |
): | |
""" | |
Args: | |
text (`str`, `List[str]`): | |
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings | |
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set | |
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences). | |
text can contain <image> tokens as the placeholder for the image(s) to be inserted. | |
images (`PIL.Image.Image`, `List[PIL.Image.Image]`, `List[List[PIL.Image.Image]]`): | |
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch | |
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a | |
number of channels, H and W are image height and width. | |
the number of the images should match the number of <image> tokens in the text. | |
""" | |
assert text is not None, "text cannot be None." | |
if images is not None: | |
if isinstance(images, Image.Image): | |
images = [images] | |
if isinstance(images, list) and isinstance(images[0], Image.Image): | |
if isinstance(text, str): | |
images = [images] | |
elif isinstance(text, list): | |
if len(text) != len(images): | |
raise ValueError("Invalid input text. Number of texts does not match number of images.") | |
images = [[image] for image in images] | |
if isinstance(text, str): | |
num_images = len(images[0]) | |
num_image_tokens = text.count("<image>") | |
if num_image_tokens < num_images: | |
# prepend empty image tokens to text | |
if "USER:" in text: | |
text = text.replace("USER:", "USER:" + "<image>" * (num_images - num_image_tokens), 1) | |
elif "Human:" in text: | |
text = text.replace("Human:", "Human:" + "<image>" * (num_images - num_image_tokens), 1) | |
elif "HUMAN:" in text: | |
text = text.replace("HUMAN:", "HUMAN:" + "<image>" * (num_images - num_image_tokens), 1) | |
else: | |
text = "<image>" * (num_images - num_image_tokens) + text | |
# logger.warning("Image Tokens <image> are not provided in the text. Automatically prepending them before the text. This might cause model to behave unexpectedly.") | |
elif num_image_tokens > num_images: | |
text = text.split("<image>") | |
for i, t in enumerate(text): | |
if i < num_images: | |
text[i] = t + "<image>" | |
text = "".join(text) | |
logger.warning(f"Number of <image> tokens: {num_image_tokens} exceeds number of images: {num_images}. Automatically removing extra tokens at the end of the text.") | |
# raise ValueError("Invalid input text. Number of <image> tokens exceeds number of images.") | |
texts = [text] | |
elif isinstance(text, list): | |
if not isinstance(text[0], str): | |
raise ValueError("Invalid input text. Each element of text must be a string.") | |
for i, t in enumerate(text): | |
num_image_tokens = t.count("<image>") | |
num_images = len(images[i]) | |
if num_image_tokens < num_images: | |
# prepend empty image tokens to text | |
if "USER:" in t: | |
t = t.replace("USER:", "USER:" + "<image>" * (num_images - num_image_tokens), 1) | |
elif "Human:" in t: | |
t = t.replace("Human:", "Human:" + "<image>" * (num_images - num_image_tokens), 1) | |
elif "HUMAN:" in t: | |
t = t.replace("HUMAN:", "HUMAN:" + "<image>" * (num_images - num_image_tokens), 1) | |
else: | |
t = "<image>" * (num_images - num_image_tokens) + t | |
# logger.warning("Image Tokens <image> are not provided in the text. Automatically prepending them before the text. This might cause model to behave unexpectedly.") | |
elif num_image_tokens > num_images: | |
t = t.split("<image>") | |
for j, s in enumerate(t): | |
if j < num_images: | |
t[j] = s + "<image>" | |
t = "".join(t) | |
logger.warning(f"Number of <image> tokens: {num_image_tokens} exceeds number of images: {num_images}. Automatically removing extra tokens at the end of the text.") | |
# raise ValueError("Invalid input text. Number of <image> tokens exceeds number of images.") | |
text[i] = t | |
texts = text | |
else: | |
raise ValueError("Invalid input text. text must be a string or a list of strings.") | |
assert all([t.count("<image>") == len(images_per_text) for t, images_per_text in zip(texts, images)]), "Number of <image> tokens in text does not match number of images." | |
# add image denotation in text before each <image> as "(image {i}: <image>)" | |
for i, t in enumerate(texts): | |
for j in range(len(images[i])): | |
t = t.replace("<image>", f"(image {j+1}: <Image><IMAGE></Image>)", 1) | |
t = t.replace("<IMAGE>", "<image>") | |
texts[i] = t | |
else: | |
if isinstance(text, str): | |
texts = [text] | |
elif isinstance(text, list): | |
if not isinstance(text[0], str): | |
raise ValueError("Invalid input text. Each element of text must be a string.") | |
texts = text | |
else: | |
raise ValueError("Invalid input text. text must be a string or a list of strings.") | |
return texts, images | |
def __call__( | |
self, | |
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, | |
keywords_text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, | |
images: ImageInput = None, | |
padding: Union[bool, str, PaddingStrategy] = False, | |
truncation: Union[bool, str, TruncationStrategy] = None, | |
max_length=None, | |
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH, | |
add_image_ids: bool = True, | |
cropping_method: str = None, | |
) -> BatchFeature: | |
""" | |
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text` | |
and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode | |
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to | |
CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring | |
of the above two methods for more information. | |
Args: | |
text (`str`, `List[str]`, `List[List[str]]`): | |
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings | |
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set | |
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences). | |
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): | |
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch | |
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a | |
number of channels, H and W are image height and width. | |
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): | |
Select a strategy to pad the returned sequences (according to the model's padding side and padding | |
index) among: | |
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single | |
sequence if provided). | |
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum | |
acceptable input length for the model if that argument is not provided. | |
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different | |
lengths). | |
max_length (`int`, *optional*): | |
Maximum length of the returned list and optionally padding length (see above). | |
truncation (`bool`, *optional*): | |
Activates truncation to cut input sequences longer than `max_length` to `max_length`. | |
return_tensors (`str` or [`~utils.TensorType`], *optional*): | |
If set, will return tensors of a particular framework. Acceptable values are: | |
- `'tf'`: Return TensorFlow `tf.constant` objects. | |
- `'pt'`: Return PyTorch `torch.Tensor` objects. | |
- `'np'`: Return NumPy `np.ndarray` objects. | |
- `'jax'`: Return JAX `jnp.ndarray` objects. | |
Returns: | |
[`BatchFeature`]: A [`BatchFeature`] with the following fields: | |
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. | |
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when | |
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not | |
`None`). | |
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. Have shape of (num_images, num_patches, num_tokens, embed_dim) | |
- **coords** -- Coordinates of the cropped images. Returned when `images` is not `None`. Have shape of (num_images, num_patches, 2) | |
""" | |
if cropping_method is not None: | |
self.cropping_method = cropping_method | |
if not self.image_token_index: | |
self.image_token_index = self.tokenizer.convert_tokens_to_ids("<image>") | |
if add_image_ids: | |
text, images = self.preprocess_interleaved_images_and_text(text, images) | |
text_inputs = self.tokenizer( | |
text, | |
padding=padding, | |
truncation=truncation, | |
max_length=max_length, | |
return_tensors=return_tensors, | |
) | |
if self.use_keyword and keywords_text is not None: | |
keywords_prompt_input_ids = self.tokenizer(keywords_text, | |
padding=padding, | |
truncation=truncation, | |
max_length=max_length, | |
return_tensors=return_tensors)['input_ids'] | |
else: | |
keywords_prompt_input_ids = None | |
if images is not None: | |
input_ids = text_inputs["input_ids"] | |
num_image_tokens = torch.sum(input_ids == self.image_token_index, dim=-1) | |
for i, num_image_token in enumerate(num_image_tokens): | |
if num_image_token < len(images[i]): | |
images[i] = images[i][:num_image_token] | |
print(f"{len(images[i]) - num_image_token} ({len(images[i])} in total) image tokens in the text are truncated due to the max sequence length; removing the extra images.") | |
# flatten images | |
images = [image for images_per_text in images for image in images_per_text] | |
image_inputs = self.process_images(images) | |
else: | |
image_inputs = {"pixel_values": None, "coords": None} | |
return BatchFeature(data={**text_inputs, **image_inputs, "keyword_prompt_input_ids": keywords_prompt_input_ids}) | |
def batch_decode(self, *args, **kwargs): | |
return self.tokenizer.batch_decode(*args, **kwargs) | |
def decode(self, *args, **kwargs): | |
return self.tokenizer.decode(*args, **kwargs) | |
def model_input_names(self): | |
tokenizer_input_names = self.tokenizer.model_input_names | |
image_processor_input_names = self.image_processor.model_input_names | |
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) | |
def _right_pad_inputs_with_attention_mask(self, model_inputs: List[Dict]): | |
results = {} | |
assert len(model_inputs) == 1, "This method only supports a single input, but get {} inputs".format(len(model_inputs)) | |
for k in model_inputs[0].keys(): | |
if k == "pixel_values" or k == "coords": | |
results[k] = model_inputs[0][k] if model_inputs[0][k] is not None else None | |
else: | |
results[k] = torch.cat([model_inputs[0][k]], dim=0) if model_inputs[0][k] is not None else None | |
return results | |
def _get_arguments_from_pretrained(cls, pretrained_model_name_or_path, **kwargs): | |
args = [] | |
cache_dir = kwargs.pop("cache_dir", None) | |
force_download = kwargs.pop("force_download", False) | |
resume_download = kwargs.pop("resume_download", False) | |
proxies = kwargs.pop("proxies", None) | |
token = kwargs.pop("token", None) | |
local_files_only = kwargs.pop("local_files_only", False) | |
revision = kwargs.pop("revision", None) | |
subfolder = kwargs.pop("subfolder", "") | |
from_pipeline = kwargs.pop("_from_pipeline", None) | |
from_auto_class = kwargs.pop("_from_auto", False) | |
user_agent = {"file_type": "processor", "from_auto_class": from_auto_class} | |
if from_pipeline is not None: | |
user_agent["using_pipeline"] = from_pipeline | |
if is_offline_mode() and not local_files_only: | |
logger.info("Offline mode: forcing local_files_only=True") | |
local_files_only = True | |
pretrained_model_name_or_path = str(pretrained_model_name_or_path) | |
is_local = os.path.isdir(pretrained_model_name_or_path) | |
if os.path.isdir(pretrained_model_name_or_path): | |
processor_file = os.path.join(pretrained_model_name_or_path, IMAGE_PROCESSOR_NAME) | |
if os.path.isfile(pretrained_model_name_or_path): | |
resolved_processor_file = pretrained_model_name_or_path | |
is_local = True | |
elif is_remote_url(pretrained_model_name_or_path): | |
processor_file = pretrained_model_name_or_path | |
resolved_processor_file = download_url(pretrained_model_name_or_path) | |
else: | |
processor_file = IMAGE_PROCESSOR_NAME | |
try: | |
# Load from local folder or from cache or download from model Hub and cache | |
resolved_processor_file = cached_file( | |
pretrained_model_name_or_path, | |
processor_file, | |
cache_dir=cache_dir, | |
force_download=force_download, | |
proxies=proxies, | |
resume_download=resume_download, | |
local_files_only=local_files_only, | |
token=token, | |
user_agent=user_agent, | |
revision=revision, | |
subfolder=subfolder, | |
_raise_exceptions_for_missing_entries=True, | |
) | |
except EnvironmentError: | |
# Raise any environment error raise by `cached_file`. It will have a helpful error message adapted to | |
# the original exception. | |
raise | |
except Exception: | |
# For any other exception, we throw a generic error. | |
raise EnvironmentError( | |
f"Can't load processor for '{pretrained_model_name_or_path}'. If you were trying to load" | |
" it from 'https://huggingface.co/models', make sure you don't have a local directory with the" | |
f" same name. Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a" | |
f" directory containing a {IMAGE_PROCESSOR_NAME} file" | |
) | |
# Existing processors on the Hub created before #27761 being merged don't have `processor_config.json` (if not | |
# updated afterward), and we need to keep `from_pretrained` work. So here it fallbacks to the empty dict. | |
# (`cached_file` called using `_raise_exceptions_for_missing_entries=False` to avoid exception) | |
# However, for models added in the future, we won't get the expected error if this file is missing. | |
if resolved_processor_file is None: | |
image_processor_dict = {} | |
try: | |
# Load processor dict | |
with open(resolved_processor_file, "r", encoding="utf-8") as reader: | |
text = reader.read() | |
image_processor_dict = json.loads(text) | |
except json.JSONDecodeError: | |
raise EnvironmentError( | |
f"It looks like the config file at '{resolved_processor_file}' is not a valid JSON file." | |
) | |
for attribute_name in cls.attributes: | |
class_name = getattr(cls, f"{attribute_name}_class") | |
if isinstance(class_name, tuple): | |
if attribute_name == "tokenizer": | |
classes = tuple(getattr(transformers_module, n) if n is not None else None for n in class_name) | |
use_fast = kwargs.get("use_fast", True) | |
if use_fast and classes[1] is not None: | |
attribute_class = classes[1] | |
else: | |
attribute_class = classes[0] | |
elif attribute_name == "image_processor": | |
image_processor_type = image_processor_dict.get("image_processor_type", None) | |
if image_processor_type is not None: | |
assert image_processor_type in class_name, f"Invalid image processor type: {image_processor_type}" | |
attribute_class = getattr(transformers_module, image_processor_type) | |
else: | |
attribute_class = getattr(transformers_module, class_name[0]) | |
else: | |
raise ValueError(f"Invalid attribute name: {attribute_name}") | |
else: | |
attribute_class = getattr(transformers_module, class_name) | |
args.append(attribute_class.from_pretrained(pretrained_model_name_or_path, **kwargs)) | |
return args |