MuhFaridanSutariya
feat: add line counter
45d532d
raw
history blame
1.83 kB
from supervision.detection.core import Detections
from supervision.utils.video import VideoInfo, get_video_frames_generator
import streamlit as st
def process_image(image, model, label_map, byte_tracker, box_annotator):
results = model(image)[0]
detections = Detections.from_ultralytics(results)
detections = byte_tracker.update_with_detections(detections=detections)
labels = [f"{label_map[class_id]} {confidence:0.2f} -track_id:{tracker_id}" for _, _, confidence, class_id, tracker_id in detections]
annotated_image = box_annotator.annotate(scene=image, detections=detections, labels=labels)
object_counts = {}
for detection in detections:
class_id = detection[3]
class_name = label_map[class_id]
if class_name in object_counts:
object_counts[class_name] += 1
else:
object_counts[class_name] = 1
return annotated_image, object_counts
def process_video_realtime(input_video_path, model, label_map, byte_tracker, box_annotator, line_counter, line_annotator):
video_info = VideoInfo.from_video_path(input_video_path)
generator = get_video_frames_generator(input_video_path)
stframe = st.empty()
for frame in generator:
results = model(frame)[0]
detections = Detections.from_ultralytics(results)
detections = byte_tracker.update_with_detections(detections=detections)
labels = [f"{label_map[class_id]} {confidence:0.2f} -track_id:{tracker_id}" for _, _, confidence, class_id, tracker_id in detections]
line_counter.trigger(detections=detections)
annotated_frame = box_annotator.annotate(scene=frame, detections=detections, labels=labels)
line_annotator.annotate(frame=annotated_frame, line_counter=line_counter)
stframe.image(annotated_frame, channels="BGR")