Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from transformers import T5ForConditionalGeneration, T5Tokenizer | |
| # Load model and tokenizer from Hugging Face Model Hub | |
| model_name = "farelzii/GEC_Test_v1" | |
| model = T5ForConditionalGeneration.from_pretrained(model_name) | |
| tokenizer = T5Tokenizer.from_pretrained(model_name) | |
| def correct_text(input_text): | |
| # Tokenize the input text | |
| inputs = tokenizer.encode("correct: " + input_text, return_tensors="pt") | |
| # Generate the corrected text | |
| outputs = model.generate(inputs, max_length=128, num_beams=4, early_stopping=True) | |
| # Decode the generated text | |
| corrected_text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| return corrected_text | |
| # Create Gradio interface | |
| iface = gr.Interface( | |
| fn=correct_text, | |
| inputs=gr.Textbox(lines=2, placeholder="Enter text with grammar errors here..."), | |
| outputs="text", | |
| title="Grammar Correction", | |
| description="Enter a sentence with grammatical errors and get the corrected sentence." | |
| ) | |
| if __name__ == "__main__": | |
| iface.launch() | |