Update app.py
Browse files
app.py
CHANGED
|
@@ -8,17 +8,16 @@ import torch
|
|
| 8 |
import torch.nn as nn
|
| 9 |
import torchvision.models as models
|
| 10 |
import torchvision.transforms as T
|
| 11 |
-
from PIL import
|
| 12 |
import numpy as np
|
| 13 |
|
| 14 |
# Device
|
| 15 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 16 |
|
| 17 |
-
# --- Model definition
|
| 18 |
class AgeGenderClassifier(nn.Module):
|
| 19 |
def __init__(self):
|
| 20 |
super(AgeGenderClassifier, self).__init__()
|
| 21 |
-
# classifier expected input dim 2048 (as in your training run)
|
| 22 |
self.intermediate = nn.Sequential(
|
| 23 |
nn.Linear(2048, 512),
|
| 24 |
nn.ReLU(),
|
|
@@ -48,15 +47,15 @@ class AgeGenderClassifier(nn.Module):
|
|
| 48 |
def build_model(weights_path: str):
|
| 49 |
"""Rebuild VGG16 backbone + custom avgpool/classifier then load weights."""
|
| 50 |
backbone = models.vgg16(weights=models.VGG16_Weights.IMAGENET1K_V1)
|
| 51 |
-
|
|
|
|
| 52 |
for p in backbone.parameters():
|
| 53 |
p.requires_grad = False
|
| 54 |
-
|
| 55 |
-
# allow last block to be trainable if desired (kept same as your training code)
|
| 56 |
for p in backbone.features[24:].parameters():
|
| 57 |
p.requires_grad = True
|
| 58 |
|
| 59 |
-
# replace avgpool
|
| 60 |
backbone.avgpool = nn.Sequential(
|
| 61 |
nn.Conv2d(512, 512, kernel_size=3),
|
| 62 |
nn.MaxPool2d(2),
|
|
@@ -73,11 +72,9 @@ def build_model(weights_path: str):
|
|
| 73 |
raise FileNotFoundError(f"Model weights not found at {weights_path}")
|
| 74 |
|
| 75 |
state = torch.load(weights_path, map_location=device)
|
| 76 |
-
# If saved state was model.state_dict(), load directly
|
| 77 |
try:
|
| 78 |
model.load_state_dict(state)
|
| 79 |
except Exception:
|
| 80 |
-
# if state is a dict with other keys, try common wrappers
|
| 81 |
if "model_state_dict" in state:
|
| 82 |
model.load_state_dict(state["model_state_dict"])
|
| 83 |
else:
|
|
@@ -98,81 +95,50 @@ transform = T.Compose([
|
|
| 98 |
INV_AGE_SCALE = 80 # training used age/80 normalization
|
| 99 |
|
| 100 |
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
bbox = draw.textbbox((0,0), caption, font=font)
|
| 108 |
-
text_w = bbox[2] - bbox[0]
|
| 109 |
-
text_h = bbox[3] - bbox[1]
|
| 110 |
-
|
| 111 |
-
# semi-transparent rectangle
|
| 112 |
-
overlay = Image.new("RGBA", image.size)
|
| 113 |
-
overlay_draw = ImageDraw.Draw(overlay)
|
| 114 |
-
overlay_draw.rectangle([0,0,text_w+20,text_h+20], fill=(0,0,0,127))
|
| 115 |
-
image = Image.alpha_composite(image, overlay)
|
| 116 |
-
|
| 117 |
-
draw = ImageDraw.Draw(image)
|
| 118 |
-
draw.text((10,10), caption, font=font, fill="white")
|
| 119 |
-
return image.convert("RGB")
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
# --- Prediction function for multiple images ---
|
| 124 |
|
| 125 |
-
def predict_images(images: List[Image.Image], model) -> List[Image.Image]:
|
| 126 |
-
"""Takes a list of PIL images and returns list of PIL images annotated with predictions."""
|
| 127 |
-
if images is None or len(images) == 0:
|
| 128 |
-
return []
|
| 129 |
-
|
| 130 |
-
# preprocess all images into a batch
|
| 131 |
tensors = []
|
| 132 |
for im in images:
|
| 133 |
if im.mode != "RGB":
|
| 134 |
im = im.convert("RGB")
|
| 135 |
-
|
| 136 |
-
tensors.append(t)
|
| 137 |
|
| 138 |
batch = torch.stack(tensors).to(device)
|
| 139 |
|
| 140 |
with torch.no_grad():
|
| 141 |
pred_age, pred_gender = model(batch)
|
| 142 |
-
# ensure shapes (N,1)
|
| 143 |
pred_age = pred_age.squeeze(-1).cpu().numpy()
|
| 144 |
pred_gender = pred_gender.squeeze(-1).cpu().numpy()
|
| 145 |
|
| 146 |
-
|
|
|
|
|
|
|
| 147 |
for img, pa, pg in zip(images, pred_age, pred_gender):
|
| 148 |
age_val = int(np.clip(pa, 0.0, 1.0) * INV_AGE_SCALE)
|
| 149 |
gender_label = "Female" if pg > 0.5 else "Male"
|
| 150 |
gender_emoji = "π©" if pg > 0.5 else "π¨"
|
| 151 |
conf = float(pg if pg > 0.5 else 1 - pg)
|
| 152 |
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
outputs.append(out_img)
|
| 156 |
|
| 157 |
-
return
|
| 158 |
|
| 159 |
|
| 160 |
-
# --- Load model
|
| 161 |
MODEL_WEIGHTS = os.environ.get("MODEL_PATH", "age_gender_model.pth")
|
| 162 |
model = build_model(MODEL_WEIGHTS)
|
| 163 |
|
|
|
|
| 164 |
# --- Gradio UI ---
|
| 165 |
with gr.Blocks(title="FairFace Age & Gender β Multi-image Demo") as demo:
|
| 166 |
gr.Markdown("""
|
| 167 |
# π§ FairFace Multi-task Age & Gender Predictor
|
| 168 |
-
Upload **one or more** images (JPG/PNG). The app will predict **gender** and **age** for each image and display results
|
| 169 |
-
|
| 170 |
-
**How to use**
|
| 171 |
-
1. Click **Browse** or drag & drop multiple images. β
|
| 172 |
-
2. Click **Run**. The model processes images and shows results below. β‘
|
| 173 |
-
3. Use the download button on the output images if you want to save them.
|
| 174 |
-
|
| 175 |
-
*Note:* Age is estimated (approx.). This model was trained on the FairFace dataset.
|
| 176 |
""")
|
| 177 |
|
| 178 |
with gr.Row():
|
|
@@ -180,41 +146,34 @@ with gr.Blocks(title="FairFace Age & Gender β Multi-image Demo") as demo:
|
|
| 180 |
run_btn = gr.Button("Run βΆοΈ")
|
| 181 |
|
| 182 |
gallery = gr.Gallery(
|
| 183 |
-
label="
|
| 184 |
-
|
| 185 |
-
elem_id="gallery",
|
| 186 |
-
columns=3, # 3 images per row
|
| 187 |
height="auto"
|
| 188 |
)
|
| 189 |
|
|
|
|
|
|
|
| 190 |
def run_and_predict(files):
|
| 191 |
-
# files is list of uploaded file dicts or file paths depending on environment
|
| 192 |
if not files:
|
| 193 |
-
return []
|
| 194 |
-
|
| 195 |
pil_imgs = []
|
| 196 |
-
# if File component returns list of dicts in HF spaces, handle both
|
| 197 |
for f in files:
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
# web upload format
|
| 201 |
-
im = Image.open(io.BytesIO(f["data"]))
|
| 202 |
-
else:
|
| 203 |
-
path = f if isinstance(f, str) else f.name
|
| 204 |
-
im = Image.open(path)
|
| 205 |
-
pil_imgs.append(im.convert("RGB"))
|
| 206 |
|
| 207 |
-
|
|
|
|
|
|
|
| 208 |
|
| 209 |
-
run_btn.click(fn=run_and_predict, inputs=[img_input], outputs=[gallery])
|
| 210 |
|
| 211 |
gr.Markdown("""
|
| 212 |
---
|
| 213 |
**Tips & Notes**
|
| 214 |
-
-
|
| 215 |
-
-
|
| 216 |
-
- This
|
| 217 |
""")
|
| 218 |
|
| 219 |
if __name__ == "__main__":
|
| 220 |
-
demo.launch()
|
|
|
|
| 8 |
import torch.nn as nn
|
| 9 |
import torchvision.models as models
|
| 10 |
import torchvision.transforms as T
|
| 11 |
+
from PIL import Image
|
| 12 |
import numpy as np
|
| 13 |
|
| 14 |
# Device
|
| 15 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 16 |
|
| 17 |
+
# --- Model definition ---
|
| 18 |
class AgeGenderClassifier(nn.Module):
|
| 19 |
def __init__(self):
|
| 20 |
super(AgeGenderClassifier, self).__init__()
|
|
|
|
| 21 |
self.intermediate = nn.Sequential(
|
| 22 |
nn.Linear(2048, 512),
|
| 23 |
nn.ReLU(),
|
|
|
|
| 47 |
def build_model(weights_path: str):
|
| 48 |
"""Rebuild VGG16 backbone + custom avgpool/classifier then load weights."""
|
| 49 |
backbone = models.vgg16(weights=models.VGG16_Weights.IMAGENET1K_V1)
|
| 50 |
+
|
| 51 |
+
# freeze all layers
|
| 52 |
for p in backbone.parameters():
|
| 53 |
p.requires_grad = False
|
| 54 |
+
# optionally allow last block to be trainable
|
|
|
|
| 55 |
for p in backbone.features[24:].parameters():
|
| 56 |
p.requires_grad = True
|
| 57 |
|
| 58 |
+
# replace avgpool
|
| 59 |
backbone.avgpool = nn.Sequential(
|
| 60 |
nn.Conv2d(512, 512, kernel_size=3),
|
| 61 |
nn.MaxPool2d(2),
|
|
|
|
| 72 |
raise FileNotFoundError(f"Model weights not found at {weights_path}")
|
| 73 |
|
| 74 |
state = torch.load(weights_path, map_location=device)
|
|
|
|
| 75 |
try:
|
| 76 |
model.load_state_dict(state)
|
| 77 |
except Exception:
|
|
|
|
| 78 |
if "model_state_dict" in state:
|
| 79 |
model.load_state_dict(state["model_state_dict"])
|
| 80 |
else:
|
|
|
|
| 95 |
INV_AGE_SCALE = 80 # training used age/80 normalization
|
| 96 |
|
| 97 |
|
| 98 |
+
# --- Prediction function ---
|
| 99 |
+
def predict_images_with_text(images: List[Image.Image], model):
|
| 100 |
+
"""Return original images and captions for each."""
|
| 101 |
+
if not images:
|
| 102 |
+
return [], []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
tensors = []
|
| 105 |
for im in images:
|
| 106 |
if im.mode != "RGB":
|
| 107 |
im = im.convert("RGB")
|
| 108 |
+
tensors.append(transform(im))
|
|
|
|
| 109 |
|
| 110 |
batch = torch.stack(tensors).to(device)
|
| 111 |
|
| 112 |
with torch.no_grad():
|
| 113 |
pred_age, pred_gender = model(batch)
|
|
|
|
| 114 |
pred_age = pred_age.squeeze(-1).cpu().numpy()
|
| 115 |
pred_gender = pred_gender.squeeze(-1).cpu().numpy()
|
| 116 |
|
| 117 |
+
output_images = []
|
| 118 |
+
captions = []
|
| 119 |
+
|
| 120 |
for img, pa, pg in zip(images, pred_age, pred_gender):
|
| 121 |
age_val = int(np.clip(pa, 0.0, 1.0) * INV_AGE_SCALE)
|
| 122 |
gender_label = "Female" if pg > 0.5 else "Male"
|
| 123 |
gender_emoji = "π©" if pg > 0.5 else "π¨"
|
| 124 |
conf = float(pg if pg > 0.5 else 1 - pg)
|
| 125 |
|
| 126 |
+
output_images.append(np.array(img))
|
| 127 |
+
captions.append(f"{gender_emoji} {gender_label} ({conf:.2f}) β’ π Age β {age_val}")
|
|
|
|
| 128 |
|
| 129 |
+
return output_images, captions
|
| 130 |
|
| 131 |
|
| 132 |
+
# --- Load model ---
|
| 133 |
MODEL_WEIGHTS = os.environ.get("MODEL_PATH", "age_gender_model.pth")
|
| 134 |
model = build_model(MODEL_WEIGHTS)
|
| 135 |
|
| 136 |
+
|
| 137 |
# --- Gradio UI ---
|
| 138 |
with gr.Blocks(title="FairFace Age & Gender β Multi-image Demo") as demo:
|
| 139 |
gr.Markdown("""
|
| 140 |
# π§ FairFace Multi-task Age & Gender Predictor
|
| 141 |
+
Upload **one or more** images (JPG/PNG). The app will predict **gender** and **age** for each image and display results below the image.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
""")
|
| 143 |
|
| 144 |
with gr.Row():
|
|
|
|
| 146 |
run_btn = gr.Button("Run βΆοΈ")
|
| 147 |
|
| 148 |
gallery = gr.Gallery(
|
| 149 |
+
label="Uploaded Images",
|
| 150 |
+
columns=3,
|
|
|
|
|
|
|
| 151 |
height="auto"
|
| 152 |
)
|
| 153 |
|
| 154 |
+
captions = gr.HTML(label="Predictions")
|
| 155 |
+
|
| 156 |
def run_and_predict(files):
|
|
|
|
| 157 |
if not files:
|
| 158 |
+
return [], ""
|
|
|
|
| 159 |
pil_imgs = []
|
|
|
|
| 160 |
for f in files:
|
| 161 |
+
path = f if isinstance(f, str) else f.name
|
| 162 |
+
pil_imgs.append(Image.open(path).convert("RGB"))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
|
| 164 |
+
imgs, texts = predict_images_with_text(pil_imgs, model)
|
| 165 |
+
captions_html = "<br>".join([f"<h2>{t}</h2>" for t in texts])
|
| 166 |
+
return imgs, captions_html
|
| 167 |
|
| 168 |
+
run_btn.click(fn=run_and_predict, inputs=[img_input], outputs=[gallery, captions])
|
| 169 |
|
| 170 |
gr.Markdown("""
|
| 171 |
---
|
| 172 |
**Tips & Notes**
|
| 173 |
+
- Age is normalized to 0β80 years (approx.).
|
| 174 |
+
- For best results, upload clear frontal face images.
|
| 175 |
+
- This is a demo β respect privacy when using photos. π
|
| 176 |
""")
|
| 177 |
|
| 178 |
if __name__ == "__main__":
|
| 179 |
+
demo.launch()
|