HTK / configs /train_roberta_large_finetune.yaml
faori's picture
Upload folder using huggingface_hub
550665c verified
RetroDataModelArguments:
# DataArguments
max_seq_length: 512
max_answer_length: 30
doc_stride: 128
return_token_type_ids: True
pad_to_max_length: True
preprocessing_num_workers: 5
overwrite_cache: False
version_2_with_negative: True
null_score_diff_threshold: 0.0
rear_threshold: 0.0
n_best_size: 20
use_choice_logits: False
start_n_top: -1
end_n_top: -1
beta1: 1
beta2: 1
best_cof: 1
# SketchModelArguments
sketch_model_name: FacebookAI/roberta-large
sketch_architectures: RobertaForSequenceClassification
# IntensiveModelArguments
intensive_model_name: FacebookAI/roberta-large
intensive_model_mode: finetune
intensive_architectures: RobertaForQuestionAnsweringAVPool
TrainingArguments:
# report_to: wandb
run_name: squadv2-roberta-base-sketch,squadv2-roberta-base-intensive
output_dir: outputs
overwrite_output_dir: False
learning_rate: 2e-5
evaluation_strategy: epoch
save_strategy: steps # Save checkpoints every specified number of steps
# save_steps: 5000 # Save model checkpoints every 5000 steps
save_steps: 5000
save_total_limit: 2 # Maximum number of checkpoints to keep
# load_best_model_at_end: True # Disable to avoid loading the best model at the end
# no need to specify checkpoint_dir, it defaults to output_dir
# no need to specify logging_dir, it defaults to output_dir
per_device_train_batch_size: 512
per_device_eval_batch_size: 512
num_train_epochs: 10.0
# no need to specify metric_for_best_model for resuming from checkpoints
no_cuda: False
fp16: True
warmup_ratio: 0.1
weight_decay: 0.01