Vincentqyw
fix: roma
8b973ee
from loguru import logger
import torch
import torch.nn as nn
class ASpanLoss(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config # config under the global namespace
self.loss_config = config["aspan"]["loss"]
self.match_type = self.config["aspan"]["match_coarse"]["match_type"]
self.sparse_spvs = self.config["aspan"]["match_coarse"]["sparse_spvs"]
self.flow_weight = self.config["aspan"]["loss"]["flow_weight"]
# coarse-level
self.correct_thr = self.loss_config["fine_correct_thr"]
self.c_pos_w = self.loss_config["pos_weight"]
self.c_neg_w = self.loss_config["neg_weight"]
# fine-level
self.fine_type = self.loss_config["fine_type"]
def compute_flow_loss(self, coarse_corr_gt, flow_list, h0, w0, h1, w1):
# coarse_corr_gt:[[batch_indices],[left_indices],[right_indices]]
# flow_list: [L,B,H,W,4]
loss1 = self.flow_loss_worker(
flow_list[0], coarse_corr_gt[0], coarse_corr_gt[1], coarse_corr_gt[2], w1
)
loss2 = self.flow_loss_worker(
flow_list[1], coarse_corr_gt[0], coarse_corr_gt[2], coarse_corr_gt[1], w0
)
total_loss = (loss1 + loss2) / 2
return total_loss
def flow_loss_worker(self, flow, batch_indicies, self_indicies, cross_indicies, w):
bs, layer_num = flow.shape[1], flow.shape[0]
flow = flow.view(layer_num, bs, -1, 4)
gt_flow = torch.stack([cross_indicies % w, cross_indicies // w], dim=1)
total_loss_list = []
for layer_index in range(layer_num):
cur_flow_list = flow[layer_index]
spv_flow = cur_flow_list[batch_indicies, self_indicies][:, :2]
spv_conf = cur_flow_list[batch_indicies, self_indicies][
:, 2:
] # [#coarse,2]
l2_flow_dis = (gt_flow - spv_flow) ** 2 # [#coarse,2]
total_loss = spv_conf + torch.exp(-spv_conf) * l2_flow_dis # [#coarse,2]
total_loss_list.append(total_loss.mean())
total_loss = torch.stack(total_loss_list, dim=-1) * self.flow_weight
return total_loss
def compute_coarse_loss(self, conf, conf_gt, weight=None):
"""Point-wise CE / Focal Loss with 0 / 1 confidence as gt.
Args:
conf (torch.Tensor): (N, HW0, HW1) / (N, HW0+1, HW1+1)
conf_gt (torch.Tensor): (N, HW0, HW1)
weight (torch.Tensor): (N, HW0, HW1)
"""
pos_mask, neg_mask = conf_gt == 1, conf_gt == 0
c_pos_w, c_neg_w = self.c_pos_w, self.c_neg_w
# corner case: no gt coarse-level match at all
if not pos_mask.any(): # assign a wrong gt
pos_mask[0, 0, 0] = True
if weight is not None:
weight[0, 0, 0] = 0.0
c_pos_w = 0.0
if not neg_mask.any():
neg_mask[0, 0, 0] = True
if weight is not None:
weight[0, 0, 0] = 0.0
c_neg_w = 0.0
if self.loss_config["coarse_type"] == "cross_entropy":
assert (
not self.sparse_spvs
), "Sparse Supervision for cross-entropy not implemented!"
conf = torch.clamp(conf, 1e-6, 1 - 1e-6)
loss_pos = -torch.log(conf[pos_mask])
loss_neg = -torch.log(1 - conf[neg_mask])
if weight is not None:
loss_pos = loss_pos * weight[pos_mask]
loss_neg = loss_neg * weight[neg_mask]
return c_pos_w * loss_pos.mean() + c_neg_w * loss_neg.mean()
elif self.loss_config["coarse_type"] == "focal":
conf = torch.clamp(conf, 1e-6, 1 - 1e-6)
alpha = self.loss_config["focal_alpha"]
gamma = self.loss_config["focal_gamma"]
if self.sparse_spvs:
pos_conf = (
conf[:, :-1, :-1][pos_mask]
if self.match_type == "sinkhorn"
else conf[pos_mask]
)
loss_pos = -alpha * torch.pow(1 - pos_conf, gamma) * pos_conf.log()
# calculate losses for negative samples
if self.match_type == "sinkhorn":
neg0, neg1 = conf_gt.sum(-1) == 0, conf_gt.sum(1) == 0
neg_conf = torch.cat(
[conf[:, :-1, -1][neg0], conf[:, -1, :-1][neg1]], 0
)
loss_neg = -alpha * torch.pow(1 - neg_conf, gamma) * neg_conf.log()
else:
# These is no dustbin for dual_softmax, so we left unmatchable patches without supervision.
# we could also add 'pseudo negtive-samples'
pass
# handle loss weights
if weight is not None:
# Different from dense-spvs, the loss w.r.t. padded regions aren't directly zeroed out,
# but only through manually setting corresponding regions in sim_matrix to '-inf'.
loss_pos = loss_pos * weight[pos_mask]
if self.match_type == "sinkhorn":
neg_w0 = (weight.sum(-1) != 0)[neg0]
neg_w1 = (weight.sum(1) != 0)[neg1]
neg_mask = torch.cat([neg_w0, neg_w1], 0)
loss_neg = loss_neg[neg_mask]
loss = (
c_pos_w * loss_pos.mean() + c_neg_w * loss_neg.mean()
if self.match_type == "sinkhorn"
else c_pos_w * loss_pos.mean()
)
return loss
# positive and negative elements occupy similar propotions. => more balanced loss weights needed
else: # dense supervision (in the case of match_type=='sinkhorn', the dustbin is not supervised.)
loss_pos = (
-alpha
* torch.pow(1 - conf[pos_mask], gamma)
* (conf[pos_mask]).log()
)
loss_neg = (
-alpha
* torch.pow(conf[neg_mask], gamma)
* (1 - conf[neg_mask]).log()
)
if weight is not None:
loss_pos = loss_pos * weight[pos_mask]
loss_neg = loss_neg * weight[neg_mask]
return c_pos_w * loss_pos.mean() + c_neg_w * loss_neg.mean()
# each negative element occupy a smaller propotion than positive elements. => higher negative loss weight needed
else:
raise ValueError(
"Unknown coarse loss: {type}".format(
type=self.loss_config["coarse_type"]
)
)
def compute_fine_loss(self, expec_f, expec_f_gt):
if self.fine_type == "l2_with_std":
return self._compute_fine_loss_l2_std(expec_f, expec_f_gt)
elif self.fine_type == "l2":
return self._compute_fine_loss_l2(expec_f, expec_f_gt)
else:
raise NotImplementedError()
def _compute_fine_loss_l2(self, expec_f, expec_f_gt):
"""
Args:
expec_f (torch.Tensor): [M, 2] <x, y>
expec_f_gt (torch.Tensor): [M, 2] <x, y>
"""
correct_mask = (
torch.linalg.norm(expec_f_gt, ord=float("inf"), dim=1) < self.correct_thr
)
if correct_mask.sum() == 0:
if (
self.training
): # this seldomly happen when training, since we pad prediction with gt
logger.warning("assign a false supervision to avoid ddp deadlock")
correct_mask[0] = True
else:
return None
flow_l2 = ((expec_f_gt[correct_mask] - expec_f[correct_mask]) ** 2).sum(-1)
return flow_l2.mean()
def _compute_fine_loss_l2_std(self, expec_f, expec_f_gt):
"""
Args:
expec_f (torch.Tensor): [M, 3] <x, y, std>
expec_f_gt (torch.Tensor): [M, 2] <x, y>
"""
# correct_mask tells you which pair to compute fine-loss
correct_mask = (
torch.linalg.norm(expec_f_gt, ord=float("inf"), dim=1) < self.correct_thr
)
# use std as weight that measures uncertainty
std = expec_f[:, 2]
inverse_std = 1.0 / torch.clamp(std, min=1e-10)
weight = (
inverse_std / torch.mean(inverse_std)
).detach() # avoid minizing loss through increase std
# corner case: no correct coarse match found
if not correct_mask.any():
if (
self.training
): # this seldomly happen during training, since we pad prediction with gt
# sometimes there is not coarse-level gt at all.
logger.warning("assign a false supervision to avoid ddp deadlock")
correct_mask[0] = True
weight[0] = 0.0
else:
return None
# l2 loss with std
flow_l2 = ((expec_f_gt[correct_mask] - expec_f[correct_mask, :2]) ** 2).sum(-1)
loss = (flow_l2 * weight[correct_mask]).mean()
return loss
@torch.no_grad()
def compute_c_weight(self, data):
"""compute element-wise weights for computing coarse-level loss."""
if "mask0" in data:
c_weight = (
data["mask0"].flatten(-2)[..., None]
* data["mask1"].flatten(-2)[:, None]
).float()
else:
c_weight = None
return c_weight
def forward(self, data):
"""
Update:
data (dict): update{
'loss': [1] the reduced loss across a batch,
'loss_scalars' (dict): loss scalars for tensorboard_record
}
"""
loss_scalars = {}
# 0. compute element-wise loss weight
c_weight = self.compute_c_weight(data)
# 1. coarse-level loss
loss_c = self.compute_coarse_loss(
data["conf_matrix_with_bin"]
if self.sparse_spvs and self.match_type == "sinkhorn"
else data["conf_matrix"],
data["conf_matrix_gt"],
weight=c_weight,
)
loss = loss_c * self.loss_config["coarse_weight"]
loss_scalars.update({"loss_c": loss_c.clone().detach().cpu()})
# 2. fine-level loss
loss_f = self.compute_fine_loss(data["expec_f"], data["expec_f_gt"])
if loss_f is not None:
loss += loss_f * self.loss_config["fine_weight"]
loss_scalars.update({"loss_f": loss_f.clone().detach().cpu()})
else:
assert self.training is False
loss_scalars.update({"loss_f": torch.tensor(1.0)}) # 1 is the upper bound
# 3. flow loss
coarse_corr = [data["spv_b_ids"], data["spv_i_ids"], data["spv_j_ids"]]
loss_flow = self.compute_flow_loss(
coarse_corr,
data["predict_flow"],
data["hw0_c"][0],
data["hw0_c"][1],
data["hw1_c"][0],
data["hw1_c"][1],
)
loss_flow = loss_flow * self.flow_weight
for index, loss_off in enumerate(loss_flow):
loss_scalars.update(
{"loss_flow_" + str(index): loss_off.clone().detach().cpu()}
) # 1 is the upper bound
conf = data["predict_flow"][0][:, :, :, :, 2:]
layer_num = conf.shape[0]
for layer_index in range(layer_num):
loss_scalars.update(
{
"conf_"
+ str(layer_index): conf[layer_index]
.mean()
.clone()
.detach()
.cpu()
}
) # 1 is the upper bound
loss += loss_flow.sum()
# print((loss_c * self.loss_config['coarse_weight']).data,loss_flow.data)
loss_scalars.update({"loss": loss.clone().detach().cpu()})
data.update({"loss": loss, "loss_scalars": loss_scalars})