|
""" |
|
2D visualization primitives based on Matplotlib. |
|
1) Plot images with `plot_images`. |
|
2) Call `plot_keypoints` or `plot_matches` any number of times. |
|
3) Optionally: save a .png or .pdf plot (nice in papers!) with `save_plot`. |
|
""" |
|
|
|
import matplotlib |
|
import matplotlib.pyplot as plt |
|
import matplotlib.patheffects as path_effects |
|
import numpy as np |
|
import torch |
|
|
|
|
|
def cm_RdGn(x): |
|
"""Custom colormap: red (0) -> yellow (0.5) -> green (1).""" |
|
x = np.clip(x, 0, 1)[..., None] * 2 |
|
c = x * np.array([[0, 1.0, 0]]) + (2 - x) * np.array([[1.0, 0, 0]]) |
|
return np.clip(c, 0, 1) |
|
|
|
|
|
def cm_BlRdGn(x_): |
|
"""Custom colormap: blue (-1) -> red (0.0) -> green (1).""" |
|
x = np.clip(x_, 0, 1)[..., None] * 2 |
|
c = x * np.array([[0, 1.0, 0, 1.0]]) + (2 - x) * np.array([[1.0, 0, 0, 1.0]]) |
|
|
|
xn = -np.clip(x_, -1, 0)[..., None] * 2 |
|
cn = xn * np.array([[0, 0.1, 1, 1.0]]) + (2 - xn) * np.array([[1.0, 0, 0, 1.0]]) |
|
out = np.clip(np.where(x_[..., None] < 0, cn, c), 0, 1) |
|
return out |
|
|
|
|
|
def cm_prune(x_): |
|
"""Custom colormap to visualize pruning""" |
|
if isinstance(x_, torch.Tensor): |
|
x_ = x_.cpu().numpy() |
|
max_i = max(x_) |
|
norm_x = np.where(x_ == max_i, -1, (x_ - 1) / 9) |
|
return cm_BlRdGn(norm_x) |
|
|
|
|
|
def plot_images(imgs, titles=None, cmaps="gray", dpi=100, pad=0.5, adaptive=True): |
|
"""Plot a set of images horizontally. |
|
Args: |
|
imgs: list of NumPy RGB (H, W, 3) or PyTorch RGB (3, H, W) or mono (H, W). |
|
titles: a list of strings, as titles for each image. |
|
cmaps: colormaps for monochrome images. |
|
adaptive: whether the figure size should fit the image aspect ratios. |
|
""" |
|
|
|
imgs = [ |
|
img.permute(1, 2, 0).cpu().numpy() |
|
if (isinstance(img, torch.Tensor) and img.dim() == 3) |
|
else img |
|
for img in imgs |
|
] |
|
|
|
n = len(imgs) |
|
if not isinstance(cmaps, (list, tuple)): |
|
cmaps = [cmaps] * n |
|
|
|
if adaptive: |
|
ratios = [i.shape[1] / i.shape[0] for i in imgs] |
|
else: |
|
ratios = [4 / 3] * n |
|
figsize = [sum(ratios) * 4.5, 4.5] |
|
fig, ax = plt.subplots( |
|
1, n, figsize=figsize, dpi=dpi, gridspec_kw={"width_ratios": ratios} |
|
) |
|
if n == 1: |
|
ax = [ax] |
|
for i in range(n): |
|
ax[i].imshow(imgs[i], cmap=plt.get_cmap(cmaps[i])) |
|
ax[i].get_yaxis().set_ticks([]) |
|
ax[i].get_xaxis().set_ticks([]) |
|
ax[i].set_axis_off() |
|
for spine in ax[i].spines.values(): |
|
spine.set_visible(False) |
|
if titles: |
|
ax[i].set_title(titles[i]) |
|
fig.tight_layout(pad=pad) |
|
|
|
|
|
def plot_keypoints(kpts, colors="lime", ps=4, axes=None, a=1.0): |
|
"""Plot keypoints for existing images. |
|
Args: |
|
kpts: list of ndarrays of size (N, 2). |
|
colors: string, or list of list of tuples (one for each keypoints). |
|
ps: size of the keypoints as float. |
|
""" |
|
if not isinstance(colors, list): |
|
colors = [colors] * len(kpts) |
|
if not isinstance(a, list): |
|
a = [a] * len(kpts) |
|
if axes is None: |
|
axes = plt.gcf().axes |
|
for ax, k, c, alpha in zip(axes, kpts, colors, a): |
|
if isinstance(k, torch.Tensor): |
|
k = k.cpu().numpy() |
|
ax.scatter(k[:, 0], k[:, 1], c=c, s=ps, linewidths=0, alpha=alpha) |
|
|
|
|
|
def plot_matches(kpts0, kpts1, color=None, lw=1.5, ps=4, a=1.0, labels=None, axes=None): |
|
"""Plot matches for a pair of existing images. |
|
Args: |
|
kpts0, kpts1: corresponding keypoints of size (N, 2). |
|
color: color of each match, string or RGB tuple. Random if not given. |
|
lw: width of the lines. |
|
ps: size of the end points (no endpoint if ps=0) |
|
indices: indices of the images to draw the matches on. |
|
a: alpha opacity of the match lines. |
|
""" |
|
fig = plt.gcf() |
|
if axes is None: |
|
ax = fig.axes |
|
ax0, ax1 = ax[0], ax[1] |
|
else: |
|
ax0, ax1 = axes |
|
if isinstance(kpts0, torch.Tensor): |
|
kpts0 = kpts0.cpu().numpy() |
|
if isinstance(kpts1, torch.Tensor): |
|
kpts1 = kpts1.cpu().numpy() |
|
assert len(kpts0) == len(kpts1) |
|
if color is None: |
|
color = matplotlib.cm.hsv(np.random.rand(len(kpts0))).tolist() |
|
elif len(color) > 0 and not isinstance(color[0], (tuple, list)): |
|
color = [color] * len(kpts0) |
|
|
|
if lw > 0: |
|
for i in range(len(kpts0)): |
|
line = matplotlib.patches.ConnectionPatch( |
|
xyA=(kpts0[i, 0], kpts0[i, 1]), |
|
xyB=(kpts1[i, 0], kpts1[i, 1]), |
|
coordsA=ax0.transData, |
|
coordsB=ax1.transData, |
|
axesA=ax0, |
|
axesB=ax1, |
|
zorder=1, |
|
color=color[i], |
|
linewidth=lw, |
|
clip_on=True, |
|
alpha=a, |
|
label=None if labels is None else labels[i], |
|
picker=5.0, |
|
) |
|
line.set_annotation_clip(True) |
|
fig.add_artist(line) |
|
|
|
|
|
ax0.autoscale(enable=False) |
|
ax1.autoscale(enable=False) |
|
|
|
if ps > 0: |
|
ax0.scatter(kpts0[:, 0], kpts0[:, 1], c=color, s=ps) |
|
ax1.scatter(kpts1[:, 0], kpts1[:, 1], c=color, s=ps) |
|
|
|
|
|
def add_text( |
|
idx, |
|
text, |
|
pos=(0.01, 0.99), |
|
fs=15, |
|
color="w", |
|
lcolor="k", |
|
lwidth=2, |
|
ha="left", |
|
va="top", |
|
): |
|
ax = plt.gcf().axes[idx] |
|
t = ax.text( |
|
*pos, text, fontsize=fs, ha=ha, va=va, color=color, transform=ax.transAxes |
|
) |
|
if lcolor is not None: |
|
t.set_path_effects( |
|
[ |
|
path_effects.Stroke(linewidth=lwidth, foreground=lcolor), |
|
path_effects.Normal(), |
|
] |
|
) |
|
|
|
|
|
def save_plot(path, **kw): |
|
"""Save the current figure without any white margin.""" |
|
plt.savefig(path, bbox_inches="tight", pad_inches=0, **kw) |
|
|