|
|
|
|
|
|
|
|
|
import pdb |
|
from PIL import Image |
|
import numpy as np |
|
|
|
import torch |
|
import torchvision.transforms as tvf |
|
|
|
from tools.transforms import instanciate_transformation |
|
from tools.transforms_tools import persp_apply |
|
|
|
|
|
RGB_mean = [0.485, 0.456, 0.406] |
|
RGB_std = [0.229, 0.224, 0.225] |
|
|
|
norm_RGB = tvf.Compose([tvf.ToTensor(), tvf.Normalize(mean=RGB_mean, std=RGB_std)]) |
|
|
|
|
|
class PairLoader: |
|
"""On-the-fly jittering of pairs of image with dense pixel ground-truth correspondences. |
|
|
|
crop: random crop applied to both images |
|
scale: random scaling applied to img2 |
|
distort: random ditorsion applied to img2 |
|
|
|
self[idx] returns a dictionary with keys: img1, img2, aflow, mask |
|
- img1: cropped original |
|
- img2: distorted cropped original |
|
- aflow: 'absolute' optical flow = (x,y) position of each pixel from img1 in img2 |
|
- mask: (binary image) valid pixels of img1 |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dataset, |
|
crop="", |
|
scale="", |
|
distort="", |
|
norm=norm_RGB, |
|
what="aflow mask", |
|
idx_as_rng_seed=False, |
|
): |
|
assert hasattr(dataset, "npairs") |
|
assert hasattr(dataset, "get_pair") |
|
self.dataset = dataset |
|
self.distort = instanciate_transformation(distort) |
|
self.crop = instanciate_transformation(crop) |
|
self.norm = instanciate_transformation(norm) |
|
self.scale = instanciate_transformation(scale) |
|
self.idx_as_rng_seed = idx_as_rng_seed |
|
self.what = what.split() if isinstance(what, str) else what |
|
self.n_samples = 5 |
|
|
|
def __len__(self): |
|
assert len(self.dataset) == self.dataset.npairs, pdb.set_trace() |
|
return len(self.dataset) |
|
|
|
def __repr__(self): |
|
fmt_str = "PairLoader\n" |
|
fmt_str += repr(self.dataset) |
|
fmt_str += " npairs: %d\n" % self.dataset.npairs |
|
short_repr = ( |
|
lambda s: repr(s).strip().replace("\n", ", ")[14:-1].replace(" ", " ") |
|
) |
|
fmt_str += " Distort: %s\n" % short_repr(self.distort) |
|
fmt_str += " Crop: %s\n" % short_repr(self.crop) |
|
fmt_str += " Norm: %s\n" % short_repr(self.norm) |
|
return fmt_str |
|
|
|
def __getitem__(self, i): |
|
|
|
if self.idx_as_rng_seed: |
|
import random |
|
|
|
random.seed(i) |
|
np.random.seed(i) |
|
|
|
|
|
img_a, img_b, metadata = self.dataset.get_pair(i, self.what) |
|
|
|
|
|
|
|
|
|
aflow = np.float32(metadata["aflow"]) |
|
mask = metadata.get("mask", np.ones(aflow.shape[:2], np.uint8)) |
|
|
|
|
|
img_b = {"img": img_b, "persp": (1, 0, 0, 0, 1, 0, 0, 0)} |
|
if self.scale: |
|
img_b = self.scale(img_b) |
|
if self.distort: |
|
img_b = self.distort(img_b) |
|
|
|
|
|
aflow[:] = persp_apply(img_b["persp"], aflow.reshape(-1, 2)).reshape( |
|
aflow.shape |
|
) |
|
corres = None |
|
if "corres" in metadata: |
|
corres = np.float32(metadata["corres"]) |
|
corres[:, 1] = persp_apply(img_b["persp"], corres[:, 1]) |
|
|
|
|
|
homography = None |
|
if "homography" in metadata: |
|
homography = np.float32(metadata["homography"]) |
|
|
|
persp = np.float32(img_b["persp"] + (1,)).reshape(3, 3) |
|
homography = persp @ homography |
|
|
|
|
|
img_b = img_b["img"] |
|
crop_size = self.crop({"imsize": (10000, 10000)})["imsize"] |
|
output_size_a = min(img_a.size, crop_size) |
|
output_size_b = min(img_b.size, crop_size) |
|
img_a = np.array(img_a) |
|
img_b = np.array(img_b) |
|
|
|
ah, aw, p1 = img_a.shape |
|
bh, bw, p2 = img_b.shape |
|
assert p1 == 3 |
|
assert p2 == 3 |
|
assert aflow.shape == (ah, aw, 2) |
|
assert mask.shape == (ah, aw) |
|
|
|
|
|
|
|
dx = np.gradient(aflow[:, :, 0]) |
|
dy = np.gradient(aflow[:, :, 1]) |
|
scale = np.sqrt(np.clip(np.abs(dx[1] * dy[0] - dx[0] * dy[1]), 1e-16, 1e16)) |
|
|
|
accu2 = np.zeros((16, 16), bool) |
|
Q = lambda x, w: np.int32(16 * (x - w.start) / (w.stop - w.start)) |
|
|
|
def window1(x, size, w): |
|
l = x - int(0.5 + size / 2) |
|
r = l + int(0.5 + size) |
|
if l < 0: |
|
l, r = (0, r - l) |
|
if r > w: |
|
l, r = (l + w - r, w) |
|
if l < 0: |
|
l, r = 0, w |
|
return slice(l, r) |
|
|
|
def window(cx, cy, win_size, scale, img_shape): |
|
return ( |
|
window1(cy, win_size[1] * scale, img_shape[0]), |
|
window1(cx, win_size[0] * scale, img_shape[1]), |
|
) |
|
|
|
n_valid_pixel = mask.sum() |
|
sample_w = mask / (1e-16 + n_valid_pixel) |
|
|
|
def sample_valid_pixel(): |
|
n = np.random.choice(sample_w.size, p=sample_w.ravel()) |
|
y, x = np.unravel_index(n, sample_w.shape) |
|
return x, y |
|
|
|
|
|
trials = 0 |
|
best = -np.inf, None |
|
for _ in range(50 * self.n_samples): |
|
if trials >= self.n_samples: |
|
break |
|
|
|
|
|
if n_valid_pixel == 0: |
|
break |
|
c1x, c1y = sample_valid_pixel() |
|
|
|
|
|
|
|
c2x, c2y = (aflow[c1y, c1x] + 0.5).astype(np.int32) |
|
if not (0 <= c2x < bw and 0 <= c2y < bh): |
|
continue |
|
|
|
|
|
sigma = scale[c1y, c1x] |
|
|
|
|
|
if 0.2 < sigma < 1: |
|
win1 = window(c1x, c1y, output_size_a, 1 / sigma, img_a.shape) |
|
win2 = window(c2x, c2y, output_size_b, 1, img_b.shape) |
|
elif 1 <= sigma < 5: |
|
win1 = window(c1x, c1y, output_size_a, 1, img_a.shape) |
|
win2 = window(c2x, c2y, output_size_b, sigma, img_b.shape) |
|
else: |
|
continue |
|
|
|
|
|
x2, y2 = aflow[win1].reshape(-1, 2).T.astype(np.int32) |
|
|
|
valid = ( |
|
(win2[1].start <= x2) |
|
& (x2 < win2[1].stop) |
|
& (win2[0].start <= y2) |
|
& (y2 < win2[0].stop) |
|
) |
|
score1 = (valid * mask[win1].ravel()).mean() |
|
|
|
accu2[:] = False |
|
accu2[Q(y2[valid], win2[0]), Q(x2[valid], win2[1])] = True |
|
score2 = accu2.mean() |
|
|
|
score = min(score1, score2) |
|
|
|
trials += 1 |
|
if score > best[0]: |
|
best = score, win1, win2 |
|
|
|
if None in best: |
|
img_a = np.zeros(output_size_a[::-1] + (3,), dtype=np.uint8) |
|
img_b = np.zeros(output_size_b[::-1] + (3,), dtype=np.uint8) |
|
aflow = np.nan * np.ones((2,) + output_size_a[::-1], dtype=np.float32) |
|
homography = np.nan * np.ones((3, 3), dtype=np.float32) |
|
|
|
else: |
|
win1, win2 = best[1:] |
|
img_a = img_a[win1] |
|
img_b = img_b[win2] |
|
aflow = aflow[win1] - np.float32([[[win2[1].start, win2[0].start]]]) |
|
mask = mask[win1] |
|
aflow[~mask.view(bool)] = np.nan |
|
aflow = aflow.transpose(2, 0, 1) |
|
|
|
if corres is not None: |
|
corres[:, 0] -= (win1[1].start, win1[0].start) |
|
corres[:, 1] -= (win2[1].start, win2[0].start) |
|
|
|
if homography is not None: |
|
trans1 = np.eye(3, dtype=np.float32) |
|
trans1[:2, 2] = (win1[1].start, win1[0].start) |
|
trans2 = np.eye(3, dtype=np.float32) |
|
trans2[:2, 2] = (-win2[1].start, -win2[0].start) |
|
homography = trans2 @ homography @ trans1 |
|
homography /= homography[2, 2] |
|
|
|
|
|
if img_a.shape[:2][::-1] != output_size_a: |
|
sx, sy = (np.float32(output_size_a) - 1) / ( |
|
np.float32(img_a.shape[:2][::-1]) - 1 |
|
) |
|
img_a = np.asarray( |
|
Image.fromarray(img_a).resize(output_size_a, Image.ANTIALIAS) |
|
) |
|
mask = np.asarray( |
|
Image.fromarray(mask).resize(output_size_a, Image.NEAREST) |
|
) |
|
afx = Image.fromarray(aflow[0]).resize(output_size_a, Image.NEAREST) |
|
afy = Image.fromarray(aflow[1]).resize(output_size_a, Image.NEAREST) |
|
aflow = np.stack((np.float32(afx), np.float32(afy))) |
|
|
|
if corres is not None: |
|
corres[:, 0] *= (sx, sy) |
|
|
|
if homography is not None: |
|
homography = homography @ np.diag(np.float32([1 / sx, 1 / sy, 1])) |
|
homography /= homography[2, 2] |
|
|
|
if img_b.shape[:2][::-1] != output_size_b: |
|
sx, sy = (np.float32(output_size_b) - 1) / ( |
|
np.float32(img_b.shape[:2][::-1]) - 1 |
|
) |
|
img_b = np.asarray( |
|
Image.fromarray(img_b).resize(output_size_b, Image.ANTIALIAS) |
|
) |
|
aflow *= [[[sx]], [[sy]]] |
|
|
|
if corres is not None: |
|
corres[:, 1] *= (sx, sy) |
|
|
|
if homography is not None: |
|
homography = np.diag(np.float32([sx, sy, 1])) @ homography |
|
homography /= homography[2, 2] |
|
|
|
assert aflow.dtype == np.float32, pdb.set_trace() |
|
assert homography is None or homography.dtype == np.float32, pdb.set_trace() |
|
if "flow" in self.what: |
|
H, W = img_a.shape[:2] |
|
mgrid = np.mgrid[0:H, 0:W][::-1].astype(np.float32) |
|
flow = aflow - mgrid |
|
|
|
result = dict(img1=self.norm(img_a), img2=self.norm(img_b)) |
|
for what in self.what: |
|
try: |
|
result[what] = eval(what) |
|
except NameError: |
|
pass |
|
return result |
|
|
|
|
|
def threaded_loader(loader, iscuda, threads, batch_size=1, shuffle=True): |
|
"""Get a data loader, given the dataset and some parameters. |
|
|
|
Parameters |
|
---------- |
|
loader : object[i] returns the i-th training example. |
|
|
|
iscuda : bool |
|
|
|
batch_size : int |
|
|
|
threads : int |
|
|
|
shuffle : int |
|
|
|
Returns |
|
------- |
|
a multi-threaded pytorch loader. |
|
""" |
|
return torch.utils.data.DataLoader( |
|
loader, |
|
batch_size=batch_size, |
|
shuffle=shuffle, |
|
sampler=None, |
|
num_workers=threads, |
|
pin_memory=iscuda, |
|
collate_fn=collate, |
|
) |
|
|
|
|
|
def collate(batch, _use_shared_memory=True): |
|
"""Puts each data field into a tensor with outer dimension batch size. |
|
Copied from https://github.com/pytorch in torch/utils/data/_utils/collate.py |
|
""" |
|
import re |
|
|
|
error_msg = "batch must contain tensors, numbers, dicts or lists; found {}" |
|
elem_type = type(batch[0]) |
|
if isinstance(batch[0], torch.Tensor): |
|
out = None |
|
if _use_shared_memory: |
|
|
|
|
|
numel = sum([x.numel() for x in batch]) |
|
storage = batch[0].storage()._new_shared(numel) |
|
out = batch[0].new(storage) |
|
return torch.stack(batch, 0, out=out) |
|
elif ( |
|
elem_type.__module__ == "numpy" |
|
and elem_type.__name__ != "str_" |
|
and elem_type.__name__ != "string_" |
|
): |
|
elem = batch[0] |
|
assert elem_type.__name__ == "ndarray" |
|
|
|
if re.search("[SaUO]", elem.dtype.str) is not None: |
|
raise TypeError(error_msg.format(elem.dtype)) |
|
batch = [torch.from_numpy(b) for b in batch] |
|
try: |
|
return torch.stack(batch, 0) |
|
except RuntimeError: |
|
return batch |
|
elif batch[0] is None: |
|
return list(batch) |
|
elif isinstance(batch[0], int): |
|
return torch.LongTensor(batch) |
|
elif isinstance(batch[0], float): |
|
return torch.DoubleTensor(batch) |
|
elif isinstance(batch[0], str): |
|
return batch |
|
elif isinstance(batch[0], dict): |
|
return {key: collate([d[key] for d in batch]) for key in batch[0]} |
|
elif isinstance(batch[0], (tuple, list)): |
|
transposed = zip(*batch) |
|
return [collate(samples) for samples in transposed] |
|
|
|
raise TypeError((error_msg.format(type(batch[0])))) |
|
|
|
|
|
def tensor2img(tensor, model=None): |
|
"""convert back a torch/numpy tensor to a PIL Image |
|
by undoing the ToTensor() and Normalize() transforms. |
|
""" |
|
mean = norm_RGB.transforms[1].mean |
|
std = norm_RGB.transforms[1].std |
|
if isinstance(tensor, torch.Tensor): |
|
tensor = tensor.detach().cpu().numpy() |
|
|
|
res = np.uint8(np.clip(255 * ((tensor.transpose(1, 2, 0) * std) + mean), 0, 255)) |
|
from PIL import Image |
|
|
|
return Image.fromarray(res) |
|
|
|
|
|
if __name__ == "__main__": |
|
import argparse |
|
|
|
parser = argparse.ArgumentParser("Tool to debug/visualize the data loader") |
|
parser.add_argument( |
|
"dataloader", type=str, help="command to create the data loader" |
|
) |
|
args = parser.parse_args() |
|
|
|
from datasets import * |
|
|
|
auto_pairs = lambda db: SyntheticPairDataset( |
|
db, |
|
"RandomScale(256,1024,can_upscale=True)", |
|
"RandomTilting(0.5), PixelNoise(25)", |
|
) |
|
|
|
loader = eval(args.dataloader) |
|
print("Data loader =", loader) |
|
|
|
from tools.viz import show_flow |
|
|
|
for data in loader: |
|
aflow = data["aflow"] |
|
H, W = aflow.shape[-2:] |
|
flow = (aflow - np.mgrid[:H, :W][::-1]).transpose(1, 2, 0) |
|
show_flow(tensor2img(data["img1"]), tensor2img(data["img2"]), flow) |
|
|