|
|
|
|
|
|
|
|
|
import pdb |
|
import numpy as np |
|
import matplotlib.pyplot as pl |
|
|
|
|
|
def make_colorwheel(): |
|
""" |
|
Generates a color wheel for optical flow visualization as presented in: |
|
Baker et al. "A Database and Evaluation Methodology for Optical Flow" (ICCV, 2007) |
|
URL: http://vision.middlebury.edu/flow/flowEval-iccv07.pdf |
|
According to the C++ source code of Daniel Scharstein |
|
According to the Matlab source code of Deqing Sun |
|
|
|
Copied from https://github.com/tomrunia/OpticalFlow_Visualization/blob/master/flow_vis.py |
|
Copyright (c) 2018 Tom Runia |
|
""" |
|
|
|
RY = 15 |
|
YG = 6 |
|
GC = 4 |
|
CB = 11 |
|
BM = 13 |
|
MR = 6 |
|
|
|
ncols = RY + YG + GC + CB + BM + MR |
|
colorwheel = np.zeros((ncols, 3)) |
|
col = 0 |
|
|
|
|
|
colorwheel[0:RY, 0] = 255 |
|
colorwheel[0:RY, 1] = np.floor(255 * np.arange(0, RY) / RY) |
|
col = col + RY |
|
|
|
colorwheel[col : col + YG, 0] = 255 - np.floor(255 * np.arange(0, YG) / YG) |
|
colorwheel[col : col + YG, 1] = 255 |
|
col = col + YG |
|
|
|
colorwheel[col : col + GC, 1] = 255 |
|
colorwheel[col : col + GC, 2] = np.floor(255 * np.arange(0, GC) / GC) |
|
col = col + GC |
|
|
|
colorwheel[col : col + CB, 1] = 255 - np.floor(255 * np.arange(CB) / CB) |
|
colorwheel[col : col + CB, 2] = 255 |
|
col = col + CB |
|
|
|
colorwheel[col : col + BM, 2] = 255 |
|
colorwheel[col : col + BM, 0] = np.floor(255 * np.arange(0, BM) / BM) |
|
col = col + BM |
|
|
|
colorwheel[col : col + MR, 2] = 255 - np.floor(255 * np.arange(MR) / MR) |
|
colorwheel[col : col + MR, 0] = 255 |
|
return colorwheel |
|
|
|
|
|
def flow_compute_color(u, v, convert_to_bgr=False): |
|
""" |
|
Applies the flow color wheel to (possibly clipped) flow components u and v. |
|
According to the C++ source code of Daniel Scharstein |
|
According to the Matlab source code of Deqing Sun |
|
:param u: np.ndarray, input horizontal flow |
|
:param v: np.ndarray, input vertical flow |
|
:param convert_to_bgr: bool, whether to change ordering and output BGR instead of RGB |
|
:return: |
|
|
|
Copied from https://github.com/tomrunia/OpticalFlow_Visualization/blob/master/flow_vis.py |
|
Copyright (c) 2018 Tom Runia |
|
""" |
|
|
|
flow_image = np.zeros((u.shape[0], u.shape[1], 3), np.uint8) |
|
|
|
colorwheel = make_colorwheel() |
|
ncols = colorwheel.shape[0] |
|
|
|
rad = np.sqrt(np.square(u) + np.square(v)) |
|
a = np.arctan2(-v, -u) / np.pi |
|
|
|
fk = (a + 1) / 2 * (ncols - 1) |
|
k0 = np.floor(fk).astype(np.int32) |
|
k1 = k0 + 1 |
|
k1[k1 == ncols] = 0 |
|
f = fk - k0 |
|
|
|
for i in range(colorwheel.shape[1]): |
|
|
|
tmp = colorwheel[:, i] |
|
col0 = tmp[k0] / 255.0 |
|
col1 = tmp[k1] / 255.0 |
|
col = (1 - f) * col0 + f * col1 |
|
|
|
idx = rad <= 1 |
|
col[idx] = 1 - rad[idx] * (1 - col[idx]) |
|
col[~idx] = col[~idx] * 0.75 |
|
|
|
|
|
ch_idx = 2 - i if convert_to_bgr else i |
|
flow_image[:, :, ch_idx] = np.floor(255 * col) |
|
|
|
return flow_image |
|
|
|
|
|
def flow_to_color(flow_uv, clip_flow=None, convert_to_bgr=False): |
|
""" |
|
Expects a two dimensional flow image of shape [H,W,2] |
|
According to the C++ source code of Daniel Scharstein |
|
According to the Matlab source code of Deqing Sun |
|
:param flow_uv: np.ndarray of shape [H,W,2] |
|
:param clip_flow: float, maximum clipping value for flow |
|
:return: |
|
|
|
Copied from https://github.com/tomrunia/OpticalFlow_Visualization/blob/master/flow_vis.py |
|
Copyright (c) 2018 Tom Runia |
|
""" |
|
|
|
assert flow_uv.ndim == 3, "input flow must have three dimensions" |
|
assert flow_uv.shape[2] == 2, "input flow must have shape [H,W,2]" |
|
|
|
if clip_flow is not None: |
|
flow_uv = np.clip(flow_uv, 0, clip_flow) |
|
|
|
u = flow_uv[:, :, 0] |
|
v = flow_uv[:, :, 1] |
|
|
|
rad = np.sqrt(np.square(u) + np.square(v)) |
|
rad_max = np.max(rad) |
|
|
|
epsilon = 1e-5 |
|
u = u / (rad_max + epsilon) |
|
v = v / (rad_max + epsilon) |
|
|
|
return flow_compute_color(u, v, convert_to_bgr) |
|
|
|
|
|
def show_flow(img0, img1, flow, mask=None): |
|
img0 = np.asarray(img0) |
|
img1 = np.asarray(img1) |
|
if mask is None: |
|
mask = 1 |
|
mask = np.asarray(mask) |
|
if mask.ndim == 2: |
|
mask = mask[:, :, None] |
|
assert flow.ndim == 3 |
|
assert flow.shape[:2] == img0.shape[:2] and flow.shape[2] == 2 |
|
|
|
def noticks(): |
|
pl.xticks([]) |
|
pl.yticks([]) |
|
|
|
fig = pl.figure("showing correspondences") |
|
ax1 = pl.subplot(221) |
|
ax1.numaxis = 0 |
|
pl.imshow(img0 * mask) |
|
noticks() |
|
ax2 = pl.subplot(222) |
|
ax2.numaxis = 1 |
|
pl.imshow(img1) |
|
noticks() |
|
|
|
ax = pl.subplot(212) |
|
ax.numaxis = 0 |
|
flow_img = flow_to_color(np.where(np.isnan(flow), 0, flow)) |
|
pl.imshow(flow_img * mask) |
|
noticks() |
|
|
|
pl.subplots_adjust(0.01, 0.01, 0.99, 0.99, wspace=0.02, hspace=0.02) |
|
|
|
def motion_notify_callback(event): |
|
if event.inaxes is None: |
|
return |
|
x, y = event.xdata, event.ydata |
|
ax1.lines = [] |
|
ax2.lines = [] |
|
try: |
|
x, y = int(x + 0.5), int(y + 0.5) |
|
ax1.plot(x, y, "+", ms=10, mew=2, color="blue", scalex=False, scaley=False) |
|
x, y = flow[y, x] + (x, y) |
|
ax2.plot(x, y, "+", ms=10, mew=2, color="red", scalex=False, scaley=False) |
|
|
|
renderer = fig.canvas.get_renderer() |
|
ax1.draw(renderer) |
|
ax2.draw(renderer) |
|
fig.canvas.blit(ax1.bbox) |
|
fig.canvas.blit(ax2.bbox) |
|
except IndexError: |
|
return |
|
|
|
cid_move = fig.canvas.mpl_connect("motion_notify_event", motion_notify_callback) |
|
print("Move your mouse over the images to show matches (ctrl-C to quit)") |
|
pl.show() |
|
|