|
from pathlib import Path |
|
from pprint import pformat |
|
import argparse |
|
|
|
from ... import extract_features, match_features |
|
from ... import pairs_from_covisibility, pairs_from_retrieval |
|
from ... import colmap_from_nvm, triangulation, localize_sfm |
|
|
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument( |
|
"--dataset", |
|
type=Path, |
|
default="datasets/aachen", |
|
help="Path to the dataset, default: %(default)s", |
|
) |
|
parser.add_argument( |
|
"--outputs", |
|
type=Path, |
|
default="outputs/aachen", |
|
help="Path to the output directory, default: %(default)s", |
|
) |
|
parser.add_argument( |
|
"--num_covis", |
|
type=int, |
|
default=20, |
|
help="Number of image pairs for SfM, default: %(default)s", |
|
) |
|
parser.add_argument( |
|
"--num_loc", |
|
type=int, |
|
default=50, |
|
help="Number of image pairs for loc, default: %(default)s", |
|
) |
|
args = parser.parse_args() |
|
|
|
|
|
dataset = args.dataset |
|
images = dataset / "images/images_upright/" |
|
|
|
outputs = args.outputs |
|
sift_sfm = outputs / "sfm_sift" |
|
reference_sfm = outputs / "sfm_superpoint+superglue" |
|
sfm_pairs = ( |
|
outputs / f"pairs-db-covis{args.num_covis}.txt" |
|
) |
|
loc_pairs = ( |
|
outputs / f"pairs-query-netvlad{args.num_loc}.txt" |
|
) |
|
results = outputs / f"Aachen_hloc_superpoint+superglue_netvlad{args.num_loc}.txt" |
|
|
|
|
|
print(f"Configs for feature extractors:\n{pformat(extract_features.confs)}") |
|
print(f"Configs for feature matchers:\n{pformat(match_features.confs)}") |
|
|
|
|
|
retrieval_conf = extract_features.confs["netvlad"] |
|
feature_conf = extract_features.confs["superpoint_aachen"] |
|
matcher_conf = match_features.confs["superglue"] |
|
|
|
features = extract_features.main(feature_conf, images, outputs) |
|
|
|
colmap_from_nvm.main( |
|
dataset / "3D-models/aachen_cvpr2018_db.nvm", |
|
dataset / "3D-models/database_intrinsics.txt", |
|
dataset / "aachen.db", |
|
sift_sfm, |
|
) |
|
pairs_from_covisibility.main(sift_sfm, sfm_pairs, num_matched=args.num_covis) |
|
sfm_matches = match_features.main( |
|
matcher_conf, sfm_pairs, feature_conf["output"], outputs |
|
) |
|
|
|
triangulation.main(reference_sfm, sift_sfm, images, sfm_pairs, features, sfm_matches) |
|
|
|
global_descriptors = extract_features.main(retrieval_conf, images, outputs) |
|
pairs_from_retrieval.main( |
|
global_descriptors, |
|
loc_pairs, |
|
args.num_loc, |
|
query_prefix="query", |
|
db_model=reference_sfm, |
|
) |
|
loc_matches = match_features.main( |
|
matcher_conf, loc_pairs, feature_conf["output"], outputs |
|
) |
|
|
|
localize_sfm.main( |
|
reference_sfm, |
|
dataset / "queries/*_time_queries_with_intrinsics.txt", |
|
loc_pairs, |
|
features, |
|
loc_matches, |
|
results, |
|
covisibility_clustering=False, |
|
) |
|
|