|
import argparse |
|
import cv2 |
|
import numpy as np |
|
import os |
|
import math |
|
import subprocess |
|
from tqdm import tqdm |
|
|
|
|
|
def compute_essential(matched_kp1, matched_kp2, K): |
|
pts1 = cv2.undistortPoints(matched_kp1,cameraMatrix=K, distCoeffs = (-0.117918271740560,0.075246403574314,0,0)) |
|
pts2 = cv2.undistortPoints(matched_kp2,cameraMatrix=K, distCoeffs = (-0.117918271740560,0.075246403574314,0,0)) |
|
K_1 = np.eye(3) |
|
|
|
ransac_model, ransac_inliers = cv2.findEssentialMat(pts1, pts2, K_1, method=cv2.RANSAC, prob=0.999, threshold=0.001, maxIters=10000) |
|
if ransac_inliers is None or ransac_model.shape != (3,3): |
|
ransac_inliers = np.array([]) |
|
ransac_model = None |
|
return ransac_model, ransac_inliers, pts1, pts2 |
|
|
|
|
|
def compute_error(R_GT,t_GT,E,pts1_norm, pts2_norm, inliers): |
|
"""Compute the angular error between two rotation matrices and two translation vectors. |
|
Keyword arguments: |
|
R -- 2D numpy array containing an estimated rotation |
|
gt_R -- 2D numpy array containing the corresponding ground truth rotation |
|
t -- 2D numpy array containing an estimated translation as column |
|
gt_t -- 2D numpy array containing the corresponding ground truth translation |
|
""" |
|
|
|
inliers = inliers.ravel() |
|
R = np.eye(3) |
|
t = np.zeros((3,1)) |
|
sst = True |
|
try: |
|
_, R, t, _ = cv2.recoverPose(E, pts1_norm, pts2_norm, np.eye(3), inliers) |
|
except: |
|
sst = False |
|
|
|
|
|
if sst: |
|
dR = np.matmul(R, np.transpose(R_GT)) |
|
dR = cv2.Rodrigues(dR)[0] |
|
dR = np.linalg.norm(dR) * 180 / math.pi |
|
|
|
|
|
dT = float(np.dot(t_GT.T, t)) |
|
dT /= float(np.linalg.norm(t_GT)) |
|
|
|
if dT > 1 or dT < -1: |
|
print("Domain warning! dT:",dT) |
|
dT = max(-1,min(1,dT)) |
|
dT = math.acos(dT) * 180 / math.pi |
|
dT = np.minimum(dT, 180 - dT) |
|
else: |
|
dR, dT = 180.0, 180.0 |
|
return dR, dT |
|
|
|
|
|
def pose_evaluation(result_base_dir, dark_name1, dark_name2, enhancer, K, R_GT, t_GT): |
|
try: |
|
m_kp1 = np.load(result_base_dir+enhancer+'/DarkFeat/POINT_1/'+dark_name1) |
|
m_kp2 = np.load(result_base_dir+enhancer+'/DarkFeat/POINT_2/'+dark_name2) |
|
except: |
|
return 180.0, 180.0 |
|
try: |
|
E, inliers, pts1, pts2 = compute_essential(m_kp1, m_kp2, K) |
|
except: |
|
E, inliers, pts1, pts2 = np.zeros((3, 3)), np.array([]), None, None |
|
dR, dT = compute_error(R_GT, t_GT, E, pts1, pts2, inliers) |
|
return dR, dT |
|
|
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--histeq', action='store_true') |
|
parser.add_argument('--dataset_dir', type=str, default='/data/hyz/MID/') |
|
opt = parser.parse_args() |
|
|
|
sizer = (960, 640) |
|
focallength_x = 4.504986436499113e+03/(6744/sizer[0]) |
|
focallength_y = 4.513311442889859e+03/(4502/sizer[1]) |
|
K = np.eye(3) |
|
K[0,0] = focallength_x |
|
K[1,1] = focallength_y |
|
K[0,2] = 3.363322177533149e+03/(6744/sizer[0]) |
|
K[1,2] = 2.291824660547715e+03/(4502/sizer[1]) |
|
Kinv = np.linalg.inv(K) |
|
Kinvt = np.transpose(Kinv) |
|
|
|
PE_MT = np.zeros((6, 8)) |
|
|
|
enhancer = 'None' if not opt.histeq else 'HistEQ' |
|
|
|
for scene in ['Indoor', 'Outdoor']: |
|
dir_base = opt.dataset_dir + '/' + scene + '/' |
|
base_save = 'result_errors/' + scene + '/' |
|
pair_list = sorted(os.listdir(dir_base)) |
|
|
|
os.makedirs(base_save, exist_ok=True) |
|
|
|
for pair in tqdm(pair_list): |
|
opention = 1 |
|
if scene == 'Outdoor': |
|
pass |
|
else: |
|
if int(pair[4::]) <= 17: |
|
opention = 0 |
|
else: |
|
pass |
|
name = [] |
|
files = sorted(os.listdir(dir_base+pair)) |
|
for file_ in files: |
|
if file_.endswith('.cr2'): |
|
name.append(file_[0:9]) |
|
ISO = ['00100', '00200', '00400', '00800', '01600', '03200', '06400', '12800'] |
|
if opention == 1: |
|
Shutter_speed = ['0.005','0.01','0.025','0.05','0.17','0.5'] |
|
else: |
|
Shutter_speed = ['0.01','0.02','0.05','0.1','0.3','1'] |
|
|
|
E_GT = np.load(dir_base+pair+'/GT_Correspondence/'+'E_estimated.npy') |
|
F_GT = np.dot(np.dot(Kinvt,E_GT),Kinv) |
|
R_GT = np.load(dir_base+pair+'/GT_Correspondence/'+'R_GT.npy') |
|
t_GT = np.load(dir_base+pair+'/GT_Correspondence/'+'T_GT.npy') |
|
result_base_dir ='result/' +scene+'/'+pair+'/' |
|
for iso in ISO: |
|
for ex in Shutter_speed: |
|
dark_name1 = name[0]+iso+'_'+ex+'_'+scene+'.npy' |
|
dark_name2 = name[1]+iso+'_'+ex+'_'+scene+'.npy' |
|
|
|
dr, dt = pose_evaluation(result_base_dir,dark_name1,dark_name2,enhancer,K,R_GT,t_GT) |
|
PE_MT[Shutter_speed.index(ex),ISO.index(iso)] = max(dr, dt) |
|
|
|
subprocess.check_output(['mkdir', '-p', base_save + pair + f'/{enhancer}/']) |
|
np.save(base_save + pair + f'/{enhancer}/Pose_error_DarkFeat.npy', PE_MT) |
|
|