|
import torch |
|
import torch.nn.functional as F |
|
import numpy as np |
|
|
|
def fast_kde(x, std = 0.1, kernel_size = 9, dilation = 3, padding = 9//2, stride = 1): |
|
raise NotImplementedError("WIP, use at your own risk.") |
|
|
|
x = x.permute(0,3,1,2) |
|
B,C,H,W = x.shape |
|
K = kernel_size ** 2 |
|
unfolded_x = F.unfold(x,kernel_size=kernel_size, dilation = dilation, padding = padding, stride = stride).reshape(B, C, K, H, W) |
|
scores = (-(unfolded_x - x[:,:,None]).sum(dim=1)**2/(2*std**2)).exp() |
|
density = scores.sum(dim=1) |
|
return density |
|
|
|
|
|
def kde(x, std = 0.1, device=None): |
|
if device is None: |
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
if isinstance(x, np.ndarray): |
|
x = torch.from_numpy(x) |
|
|
|
x = x.to(device) |
|
scores = (-torch.cdist(x,x)**2/(2*std**2)).exp() |
|
density = scores.sum(dim=-1) |
|
return density |
|
|