Vincentqyw
fix: roma
8b973ee
raw
history blame
13.3 kB
import bisect
import numpy as np
import matplotlib.pyplot as plt
import matplotlib, os, cv2
import matplotlib.cm as cm
from PIL import Image
import torch.nn.functional as F
import torch
def _compute_conf_thresh(data):
dataset_name = data["dataset_name"][0].lower()
if dataset_name == "scannet":
thr = 5e-4
elif dataset_name == "megadepth":
thr = 1e-4
else:
raise ValueError(f"Unknown dataset: {dataset_name}")
return thr
# --- VISUALIZATION --- #
def make_matching_figure(
img0,
img1,
mkpts0,
mkpts1,
color,
kpts0=None,
kpts1=None,
text=[],
dpi=75,
path=None,
):
# draw image pair
assert (
mkpts0.shape[0] == mkpts1.shape[0]
), f"mkpts0: {mkpts0.shape[0]} v.s. mkpts1: {mkpts1.shape[0]}"
fig, axes = plt.subplots(1, 2, figsize=(10, 6), dpi=dpi)
axes[0].imshow(img0) # , cmap='gray')
axes[1].imshow(img1) # , cmap='gray')
for i in range(2): # clear all frames
axes[i].get_yaxis().set_ticks([])
axes[i].get_xaxis().set_ticks([])
for spine in axes[i].spines.values():
spine.set_visible(False)
plt.tight_layout(pad=1)
if kpts0 is not None:
assert kpts1 is not None
axes[0].scatter(kpts0[:, 0], kpts0[:, 1], c="w", s=5)
axes[1].scatter(kpts1[:, 0], kpts1[:, 1], c="w", s=5)
# draw matches
if mkpts0.shape[0] != 0 and mkpts1.shape[0] != 0:
fig.canvas.draw()
transFigure = fig.transFigure.inverted()
fkpts0 = transFigure.transform(axes[0].transData.transform(mkpts0))
fkpts1 = transFigure.transform(axes[1].transData.transform(mkpts1))
fig.lines = [
matplotlib.lines.Line2D(
(fkpts0[i, 0], fkpts1[i, 0]),
(fkpts0[i, 1], fkpts1[i, 1]),
transform=fig.transFigure,
c=color[i],
linewidth=2,
)
for i in range(len(mkpts0))
]
axes[0].scatter(mkpts0[:, 0], mkpts0[:, 1], c=color[..., :3], s=4)
axes[1].scatter(mkpts1[:, 0], mkpts1[:, 1], c=color[..., :3], s=4)
# put txts
txt_color = "k" if img0[:100, :200].mean() > 200 else "w"
fig.text(
0.01,
0.99,
"\n".join(text),
transform=fig.axes[0].transAxes,
fontsize=15,
va="top",
ha="left",
color=txt_color,
)
# save or return figure
if path:
plt.savefig(str(path), bbox_inches="tight", pad_inches=0)
plt.close()
else:
return fig
def _make_evaluation_figure(data, b_id, alpha="dynamic"):
b_mask = data["m_bids"] == b_id
conf_thr = _compute_conf_thresh(data)
img0 = (data["image0"][b_id][0].cpu().numpy() * 255).round().astype(np.int32)
img1 = (data["image1"][b_id][0].cpu().numpy() * 255).round().astype(np.int32)
kpts0 = data["mkpts0_f"][b_mask].cpu().numpy()
kpts1 = data["mkpts1_f"][b_mask].cpu().numpy()
# for megadepth, we visualize matches on the resized image
if "scale0" in data:
kpts0 = kpts0 / data["scale0"][b_id].cpu().numpy()[[1, 0]]
kpts1 = kpts1 / data["scale1"][b_id].cpu().numpy()[[1, 0]]
epi_errs = data["epi_errs"][b_mask].cpu().numpy()
correct_mask = epi_errs < conf_thr
precision = np.mean(correct_mask) if len(correct_mask) > 0 else 0
n_correct = np.sum(correct_mask)
n_gt_matches = int(data["conf_matrix_gt"][b_id].sum().cpu())
recall = 0 if n_gt_matches == 0 else n_correct / (n_gt_matches)
# recall might be larger than 1, since the calculation of conf_matrix_gt
# uses groundtruth depths and camera poses, but epipolar distance is used here.
# matching info
if alpha == "dynamic":
alpha = dynamic_alpha(len(correct_mask))
color = error_colormap(epi_errs, conf_thr, alpha=alpha)
text = [
f"#Matches {len(kpts0)}",
f"Precision({conf_thr:.2e}) ({100 * precision:.1f}%): {n_correct}/{len(kpts0)}",
f"Recall({conf_thr:.2e}) ({100 * recall:.1f}%): {n_correct}/{n_gt_matches}",
]
# make the figure
figure = make_matching_figure(img0, img1, kpts0, kpts1, color, text=text)
return figure
def _make_confidence_figure(data, b_id):
# TODO: Implement confidence figure
raise NotImplementedError()
def make_matching_figures(data, config, mode="evaluation"):
"""Make matching figures for a batch.
Args:
data (Dict): a batch updated by PL_LoFTR.
config (Dict): matcher config
Returns:
figures (Dict[str, List[plt.figure]]
"""
assert mode in ["evaluation", "confidence"] # 'confidence'
figures = {mode: []}
for b_id in range(data["image0"].size(0)):
if mode == "evaluation":
fig = _make_evaluation_figure(
data, b_id, alpha=config.TRAINER.PLOT_MATCHES_ALPHA
)
elif mode == "confidence":
fig = _make_confidence_figure(data, b_id)
else:
raise ValueError(f"Unknown plot mode: {mode}")
figures[mode].append(fig)
return figures
def dynamic_alpha(
n_matches, milestones=[0, 300, 1000, 2000], alphas=[1.0, 0.8, 0.4, 0.2]
):
if n_matches == 0:
return 1.0
ranges = list(zip(alphas, alphas[1:] + [None]))
loc = bisect.bisect_right(milestones, n_matches) - 1
_range = ranges[loc]
if _range[1] is None:
return _range[0]
return _range[1] + (milestones[loc + 1] - n_matches) / (
milestones[loc + 1] - milestones[loc]
) * (_range[0] - _range[1])
def error_colormap(err, thr, alpha=1.0):
assert alpha <= 1.0 and alpha > 0, f"Invaid alpha value: {alpha}"
x = 1 - np.clip(err / (thr * 2), 0, 1)
return np.clip(
np.stack([2 - x * 2, x * 2, np.zeros_like(x), np.ones_like(x) * alpha], -1),
0,
1,
)
np.random.seed(1995)
color_map = np.arange(100)
np.random.shuffle(color_map)
def draw_topics(
data, img0, img1, saved_folder="viz_topics", show_n_topics=8, saved_name=None
):
topic0, topic1 = data["topic_matrix"]["img0"], data["topic_matrix"]["img1"]
hw0_c, hw1_c = data["hw0_c"], data["hw1_c"]
hw0_i, hw1_i = data["hw0_i"], data["hw1_i"]
# print(hw0_i, hw1_i)
scale0, scale1 = hw0_i[0] // hw0_c[0], hw1_i[0] // hw1_c[0]
if "scale0" in data:
scale0 *= data["scale0"][0]
else:
scale0 = (scale0, scale0)
if "scale1" in data:
scale1 *= data["scale1"][0]
else:
scale1 = (scale1, scale1)
n_topics = topic0.shape[-1]
# mask0_nonzero = topic0[0].sum(dim=-1, keepdim=True) > 0
# mask1_nonzero = topic1[0].sum(dim=-1, keepdim=True) > 0
theta0 = topic0[0].sum(dim=0)
theta0 /= theta0.sum().float()
theta1 = topic1[0].sum(dim=0)
theta1 /= theta1.sum().float()
# top_topic0 = torch.argsort(theta0, descending=True)[:show_n_topics]
# top_topic1 = torch.argsort(theta1, descending=True)[:show_n_topics]
top_topics = torch.argsort(theta0 * theta1, descending=True)[:show_n_topics]
# print(sum_topic0, sum_topic1)
topic0 = topic0[0].argmax(
dim=-1, keepdim=True
) # .float() / (n_topics - 1) #* 255 + 1 #
# topic0[~mask0_nonzero] = -1
topic1 = topic1[0].argmax(
dim=-1, keepdim=True
) # .float() / (n_topics - 1) #* 255 + 1
# topic1[~mask1_nonzero] = -1
label_img0, label_img1 = torch.zeros_like(topic0) - 1, torch.zeros_like(topic1) - 1
for i, k in enumerate(top_topics):
label_img0[topic0 == k] = color_map[k]
label_img1[topic1 == k] = color_map[k]
# print(hw0_c, scale0)
# print(hw1_c, scale1)
# map_topic0 = F.fold(label_img0.unsqueeze(0), hw0_i, kernel_size=scale0, stride=scale0)
map_topic0 = (
label_img0.float().view(hw0_c).cpu().numpy()
) # map_topic0.squeeze(0).squeeze(0).cpu().numpy()
map_topic0 = cv2.resize(
map_topic0, (int(hw0_c[1] * scale0[0]), int(hw0_c[0] * scale0[1]))
)
# map_topic1 = F.fold(label_img1.unsqueeze(0), hw1_i, kernel_size=scale1, stride=scale1)
map_topic1 = (
label_img1.float().view(hw1_c).cpu().numpy()
) # map_topic1.squeeze(0).squeeze(0).cpu().numpy()
map_topic1 = cv2.resize(
map_topic1, (int(hw1_c[1] * scale1[0]), int(hw1_c[0] * scale1[1]))
)
# show image0
if saved_name is None:
return map_topic0, map_topic1
if not os.path.exists(saved_folder):
os.makedirs(saved_folder)
path_saved_img0 = os.path.join(saved_folder, "{}_0.png".format(saved_name))
plt.imshow(img0)
masked_map_topic0 = np.ma.masked_where(map_topic0 < 0, map_topic0)
plt.imshow(
masked_map_topic0,
cmap=plt.cm.jet,
vmin=0,
vmax=n_topics - 1,
alpha=0.3,
interpolation="bilinear",
)
# plt.show()
plt.axis("off")
plt.savefig(path_saved_img0, bbox_inches="tight", pad_inches=0, dpi=250)
plt.close()
path_saved_img1 = os.path.join(saved_folder, "{}_1.png".format(saved_name))
plt.imshow(img1)
masked_map_topic1 = np.ma.masked_where(map_topic1 < 0, map_topic1)
plt.imshow(
masked_map_topic1,
cmap=plt.cm.jet,
vmin=0,
vmax=n_topics - 1,
alpha=0.3,
interpolation="bilinear",
)
plt.axis("off")
plt.savefig(path_saved_img1, bbox_inches="tight", pad_inches=0, dpi=250)
plt.close()
def draw_topicfm_demo(
data,
img0,
img1,
mkpts0,
mkpts1,
mcolor,
text,
show_n_topics=8,
topic_alpha=0.3,
margin=5,
path=None,
opencv_display=False,
opencv_title="",
):
topic_map0, topic_map1 = draw_topics(data, img0, img1, show_n_topics=show_n_topics)
mask_tm0, mask_tm1 = np.expand_dims(topic_map0 >= 0, axis=-1), np.expand_dims(
topic_map1 >= 0, axis=-1
)
topic_cm0, topic_cm1 = cm.jet(topic_map0 / 99.0), cm.jet(topic_map1 / 99.0)
topic_cm0 = cv2.cvtColor(topic_cm0[..., :3].astype(np.float32), cv2.COLOR_RGB2BGR)
topic_cm1 = cv2.cvtColor(topic_cm1[..., :3].astype(np.float32), cv2.COLOR_RGB2BGR)
overlay0 = (mask_tm0 * topic_cm0 + (1 - mask_tm0) * img0).astype(np.float32)
overlay1 = (mask_tm1 * topic_cm1 + (1 - mask_tm1) * img1).astype(np.float32)
cv2.addWeighted(overlay0, topic_alpha, img0, 1 - topic_alpha, 0, overlay0)
cv2.addWeighted(overlay1, topic_alpha, img1, 1 - topic_alpha, 0, overlay1)
overlay0, overlay1 = (overlay0 * 255).astype(np.uint8), (overlay1 * 255).astype(
np.uint8
)
h0, w0 = img0.shape[:2]
h1, w1 = img1.shape[:2]
h, w = h0 * 2 + margin * 2, w0 * 2 + margin
out_fig = 255 * np.ones((h, w, 3), dtype=np.uint8)
out_fig[:h0, :w0] = overlay0
if h0 >= h1:
start = (h0 - h1) // 2
out_fig[start : (start + h1), (w0 + margin) : (w0 + margin + w1)] = overlay1
else:
start = (h1 - h0) // 2
out_fig[:h0, (w0 + margin) : (w0 + margin + w1)] = overlay1[
start : (start + h0)
]
step_h = h0 + margin * 2
out_fig[step_h : step_h + h0, :w0] = (img0 * 255).astype(np.uint8)
if h0 >= h1:
start = step_h + (h0 - h1) // 2
out_fig[start : start + h1, (w0 + margin) : (w0 + margin + w1)] = (
img1 * 255
).astype(np.uint8)
else:
start = (h1 - h0) // 2
out_fig[step_h : step_h + h0, (w0 + margin) : (w0 + margin + w1)] = (
img1[start : start + h0] * 255
).astype(np.uint8)
# draw matching lines, this is inspried from https://raw.githubusercontent.com/magicleap/SuperGluePretrainedNetwork/master/models/utils.py
mkpts0, mkpts1 = np.round(mkpts0).astype(int), np.round(mkpts1).astype(int)
mcolor = (np.array(mcolor[:, [2, 1, 0]]) * 255).astype(int)
for (x0, y0), (x1, y1), c in zip(mkpts0, mkpts1, mcolor):
c = c.tolist()
cv2.line(
out_fig,
(x0, y0 + step_h),
(x1 + margin + w0, y1 + step_h + (h0 - h1) // 2),
color=c,
thickness=1,
lineType=cv2.LINE_AA,
)
# display line end-points as circles
cv2.circle(out_fig, (x0, y0 + step_h), 2, c, -1, lineType=cv2.LINE_AA)
cv2.circle(
out_fig,
(x1 + margin + w0, y1 + step_h + (h0 - h1) // 2),
2,
c,
-1,
lineType=cv2.LINE_AA,
)
# Scale factor for consistent visualization across scales.
sc = min(h / 960.0, 2.0)
# Big text.
Ht = int(30 * sc) # text height
txt_color_fg = (255, 255, 255)
txt_color_bg = (0, 0, 0)
for i, t in enumerate(text):
cv2.putText(
out_fig,
t,
(int(8 * sc), Ht + step_h * i),
cv2.FONT_HERSHEY_DUPLEX,
1.0 * sc,
txt_color_bg,
2,
cv2.LINE_AA,
)
cv2.putText(
out_fig,
t,
(int(8 * sc), Ht + step_h * i),
cv2.FONT_HERSHEY_DUPLEX,
1.0 * sc,
txt_color_fg,
1,
cv2.LINE_AA,
)
if path is not None:
cv2.imwrite(str(path), out_fig)
if opencv_display:
cv2.imshow(opencv_title, out_fig)
cv2.waitKey(1)
return out_fig