|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import sys |
|
import sqlite3 |
|
import numpy as np |
|
|
|
|
|
IS_PYTHON3 = sys.version_info[0] >= 3 |
|
|
|
MAX_IMAGE_ID = 2**31 - 1 |
|
|
|
CREATE_CAMERAS_TABLE = """CREATE TABLE IF NOT EXISTS cameras ( |
|
camera_id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL, |
|
model INTEGER NOT NULL, |
|
width INTEGER NOT NULL, |
|
height INTEGER NOT NULL, |
|
params BLOB, |
|
prior_focal_length INTEGER NOT NULL)""" |
|
|
|
CREATE_DESCRIPTORS_TABLE = """CREATE TABLE IF NOT EXISTS descriptors ( |
|
image_id INTEGER PRIMARY KEY NOT NULL, |
|
rows INTEGER NOT NULL, |
|
cols INTEGER NOT NULL, |
|
data BLOB, |
|
FOREIGN KEY(image_id) REFERENCES images(image_id) ON DELETE CASCADE)""" |
|
|
|
CREATE_IMAGES_TABLE = """CREATE TABLE IF NOT EXISTS images ( |
|
image_id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL, |
|
name TEXT NOT NULL UNIQUE, |
|
camera_id INTEGER NOT NULL, |
|
prior_qw REAL, |
|
prior_qx REAL, |
|
prior_qy REAL, |
|
prior_qz REAL, |
|
prior_tx REAL, |
|
prior_ty REAL, |
|
prior_tz REAL, |
|
CONSTRAINT image_id_check CHECK(image_id >= 0 and image_id < {}), |
|
FOREIGN KEY(camera_id) REFERENCES cameras(camera_id)) |
|
""".format( |
|
MAX_IMAGE_ID |
|
) |
|
|
|
CREATE_TWO_VIEW_GEOMETRIES_TABLE = """ |
|
CREATE TABLE IF NOT EXISTS two_view_geometries ( |
|
pair_id INTEGER PRIMARY KEY NOT NULL, |
|
rows INTEGER NOT NULL, |
|
cols INTEGER NOT NULL, |
|
data BLOB, |
|
config INTEGER NOT NULL, |
|
F BLOB, |
|
E BLOB, |
|
H BLOB, |
|
qvec BLOB, |
|
tvec BLOB) |
|
""" |
|
|
|
CREATE_KEYPOINTS_TABLE = """CREATE TABLE IF NOT EXISTS keypoints ( |
|
image_id INTEGER PRIMARY KEY NOT NULL, |
|
rows INTEGER NOT NULL, |
|
cols INTEGER NOT NULL, |
|
data BLOB, |
|
FOREIGN KEY(image_id) REFERENCES images(image_id) ON DELETE CASCADE) |
|
""" |
|
|
|
CREATE_MATCHES_TABLE = """CREATE TABLE IF NOT EXISTS matches ( |
|
pair_id INTEGER PRIMARY KEY NOT NULL, |
|
rows INTEGER NOT NULL, |
|
cols INTEGER NOT NULL, |
|
data BLOB)""" |
|
|
|
CREATE_NAME_INDEX = ( |
|
"CREATE UNIQUE INDEX IF NOT EXISTS index_name ON images(name)" |
|
) |
|
|
|
CREATE_ALL = "; ".join( |
|
[ |
|
CREATE_CAMERAS_TABLE, |
|
CREATE_IMAGES_TABLE, |
|
CREATE_KEYPOINTS_TABLE, |
|
CREATE_DESCRIPTORS_TABLE, |
|
CREATE_MATCHES_TABLE, |
|
CREATE_TWO_VIEW_GEOMETRIES_TABLE, |
|
CREATE_NAME_INDEX, |
|
] |
|
) |
|
|
|
|
|
def image_ids_to_pair_id(image_id1, image_id2): |
|
if image_id1 > image_id2: |
|
image_id1, image_id2 = image_id2, image_id1 |
|
return image_id1 * MAX_IMAGE_ID + image_id2 |
|
|
|
|
|
def pair_id_to_image_ids(pair_id): |
|
image_id2 = pair_id % MAX_IMAGE_ID |
|
image_id1 = (pair_id - image_id2) / MAX_IMAGE_ID |
|
return image_id1, image_id2 |
|
|
|
|
|
def array_to_blob(array): |
|
if IS_PYTHON3: |
|
return array.tobytes() |
|
else: |
|
return np.getbuffer(array) |
|
|
|
|
|
def blob_to_array(blob, dtype, shape=(-1,)): |
|
if IS_PYTHON3: |
|
return np.fromstring(blob, dtype=dtype).reshape(*shape) |
|
else: |
|
return np.frombuffer(blob, dtype=dtype).reshape(*shape) |
|
|
|
|
|
class COLMAPDatabase(sqlite3.Connection): |
|
@staticmethod |
|
def connect(database_path): |
|
return sqlite3.connect(str(database_path), factory=COLMAPDatabase) |
|
|
|
def __init__(self, *args, **kwargs): |
|
super(COLMAPDatabase, self).__init__(*args, **kwargs) |
|
|
|
self.create_tables = lambda: self.executescript(CREATE_ALL) |
|
self.create_cameras_table = lambda: self.executescript( |
|
CREATE_CAMERAS_TABLE |
|
) |
|
self.create_descriptors_table = lambda: self.executescript( |
|
CREATE_DESCRIPTORS_TABLE |
|
) |
|
self.create_images_table = lambda: self.executescript( |
|
CREATE_IMAGES_TABLE |
|
) |
|
self.create_two_view_geometries_table = lambda: self.executescript( |
|
CREATE_TWO_VIEW_GEOMETRIES_TABLE |
|
) |
|
self.create_keypoints_table = lambda: self.executescript( |
|
CREATE_KEYPOINTS_TABLE |
|
) |
|
self.create_matches_table = lambda: self.executescript( |
|
CREATE_MATCHES_TABLE |
|
) |
|
self.create_name_index = lambda: self.executescript(CREATE_NAME_INDEX) |
|
|
|
def add_camera( |
|
self, |
|
model, |
|
width, |
|
height, |
|
params, |
|
prior_focal_length=False, |
|
camera_id=None, |
|
): |
|
params = np.asarray(params, np.float64) |
|
cursor = self.execute( |
|
"INSERT INTO cameras VALUES (?, ?, ?, ?, ?, ?)", |
|
( |
|
camera_id, |
|
model, |
|
width, |
|
height, |
|
array_to_blob(params), |
|
prior_focal_length, |
|
), |
|
) |
|
return cursor.lastrowid |
|
|
|
def add_image( |
|
self, |
|
name, |
|
camera_id, |
|
prior_q=np.full(4, np.NaN), |
|
prior_t=np.full(3, np.NaN), |
|
image_id=None, |
|
): |
|
cursor = self.execute( |
|
"INSERT INTO images VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)", |
|
( |
|
image_id, |
|
name, |
|
camera_id, |
|
prior_q[0], |
|
prior_q[1], |
|
prior_q[2], |
|
prior_q[3], |
|
prior_t[0], |
|
prior_t[1], |
|
prior_t[2], |
|
), |
|
) |
|
return cursor.lastrowid |
|
|
|
def add_keypoints(self, image_id, keypoints): |
|
assert len(keypoints.shape) == 2 |
|
assert keypoints.shape[1] in [2, 4, 6] |
|
|
|
keypoints = np.asarray(keypoints, np.float32) |
|
self.execute( |
|
"INSERT INTO keypoints VALUES (?, ?, ?, ?)", |
|
(image_id,) + keypoints.shape + (array_to_blob(keypoints),), |
|
) |
|
|
|
def add_descriptors(self, image_id, descriptors): |
|
descriptors = np.ascontiguousarray(descriptors, np.uint8) |
|
self.execute( |
|
"INSERT INTO descriptors VALUES (?, ?, ?, ?)", |
|
(image_id,) + descriptors.shape + (array_to_blob(descriptors),), |
|
) |
|
|
|
def add_matches(self, image_id1, image_id2, matches): |
|
assert len(matches.shape) == 2 |
|
assert matches.shape[1] == 2 |
|
|
|
if image_id1 > image_id2: |
|
matches = matches[:, ::-1] |
|
|
|
pair_id = image_ids_to_pair_id(image_id1, image_id2) |
|
matches = np.asarray(matches, np.uint32) |
|
self.execute( |
|
"INSERT INTO matches VALUES (?, ?, ?, ?)", |
|
(pair_id,) + matches.shape + (array_to_blob(matches),), |
|
) |
|
|
|
def add_two_view_geometry( |
|
self, |
|
image_id1, |
|
image_id2, |
|
matches, |
|
F=np.eye(3), |
|
E=np.eye(3), |
|
H=np.eye(3), |
|
qvec=np.array([1.0, 0.0, 0.0, 0.0]), |
|
tvec=np.zeros(3), |
|
config=2, |
|
): |
|
assert len(matches.shape) == 2 |
|
assert matches.shape[1] == 2 |
|
|
|
if image_id1 > image_id2: |
|
matches = matches[:, ::-1] |
|
|
|
pair_id = image_ids_to_pair_id(image_id1, image_id2) |
|
matches = np.asarray(matches, np.uint32) |
|
F = np.asarray(F, dtype=np.float64) |
|
E = np.asarray(E, dtype=np.float64) |
|
H = np.asarray(H, dtype=np.float64) |
|
qvec = np.asarray(qvec, dtype=np.float64) |
|
tvec = np.asarray(tvec, dtype=np.float64) |
|
self.execute( |
|
"INSERT INTO two_view_geometries VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)", |
|
(pair_id,) |
|
+ matches.shape |
|
+ ( |
|
array_to_blob(matches), |
|
config, |
|
array_to_blob(F), |
|
array_to_blob(E), |
|
array_to_blob(H), |
|
array_to_blob(qvec), |
|
array_to_blob(tvec), |
|
), |
|
) |
|
|
|
|
|
def example_usage(): |
|
import os |
|
import argparse |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--database_path", default="database.db") |
|
args = parser.parse_args() |
|
|
|
if os.path.exists(args.database_path): |
|
print("ERROR: database path already exists -- will not modify it.") |
|
return |
|
|
|
|
|
|
|
db = COLMAPDatabase.connect(args.database_path) |
|
|
|
|
|
|
|
db.create_tables() |
|
|
|
|
|
|
|
model1, width1, height1, params1 = ( |
|
0, |
|
1024, |
|
768, |
|
np.array((1024.0, 512.0, 384.0)), |
|
) |
|
model2, width2, height2, params2 = ( |
|
2, |
|
1024, |
|
768, |
|
np.array((1024.0, 512.0, 384.0, 0.1)), |
|
) |
|
|
|
camera_id1 = db.add_camera(model1, width1, height1, params1) |
|
camera_id2 = db.add_camera(model2, width2, height2, params2) |
|
|
|
|
|
|
|
image_id1 = db.add_image("image1.png", camera_id1) |
|
image_id2 = db.add_image("image2.png", camera_id1) |
|
image_id3 = db.add_image("image3.png", camera_id2) |
|
image_id4 = db.add_image("image4.png", camera_id2) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
num_keypoints = 1000 |
|
keypoints1 = np.random.rand(num_keypoints, 2) * (width1, height1) |
|
keypoints2 = np.random.rand(num_keypoints, 2) * (width1, height1) |
|
keypoints3 = np.random.rand(num_keypoints, 2) * (width2, height2) |
|
keypoints4 = np.random.rand(num_keypoints, 2) * (width2, height2) |
|
|
|
db.add_keypoints(image_id1, keypoints1) |
|
db.add_keypoints(image_id2, keypoints2) |
|
db.add_keypoints(image_id3, keypoints3) |
|
db.add_keypoints(image_id4, keypoints4) |
|
|
|
|
|
|
|
M = 50 |
|
matches12 = np.random.randint(num_keypoints, size=(M, 2)) |
|
matches23 = np.random.randint(num_keypoints, size=(M, 2)) |
|
matches34 = np.random.randint(num_keypoints, size=(M, 2)) |
|
|
|
db.add_matches(image_id1, image_id2, matches12) |
|
db.add_matches(image_id2, image_id3, matches23) |
|
db.add_matches(image_id3, image_id4, matches34) |
|
|
|
|
|
|
|
db.commit() |
|
|
|
|
|
|
|
rows = db.execute("SELECT * FROM cameras") |
|
|
|
camera_id, model, width, height, params, prior = next(rows) |
|
params = blob_to_array(params, np.float64) |
|
assert camera_id == camera_id1 |
|
assert model == model1 and width == width1 and height == height1 |
|
assert np.allclose(params, params1) |
|
|
|
camera_id, model, width, height, params, prior = next(rows) |
|
params = blob_to_array(params, np.float64) |
|
assert camera_id == camera_id2 |
|
assert model == model2 and width == width2 and height == height2 |
|
assert np.allclose(params, params2) |
|
|
|
|
|
|
|
keypoints = dict( |
|
(image_id, blob_to_array(data, np.float32, (-1, 2))) |
|
for image_id, data in db.execute("SELECT image_id, data FROM keypoints") |
|
) |
|
|
|
assert np.allclose(keypoints[image_id1], keypoints1) |
|
assert np.allclose(keypoints[image_id2], keypoints2) |
|
assert np.allclose(keypoints[image_id3], keypoints3) |
|
assert np.allclose(keypoints[image_id4], keypoints4) |
|
|
|
|
|
|
|
pair_ids = [ |
|
image_ids_to_pair_id(*pair) |
|
for pair in ( |
|
(image_id1, image_id2), |
|
(image_id2, image_id3), |
|
(image_id3, image_id4), |
|
) |
|
] |
|
|
|
matches = dict( |
|
(pair_id_to_image_ids(pair_id), blob_to_array(data, np.uint32, (-1, 2))) |
|
for pair_id, data in db.execute("SELECT pair_id, data FROM matches") |
|
) |
|
|
|
assert np.all(matches[(image_id1, image_id2)] == matches12) |
|
assert np.all(matches[(image_id2, image_id3)] == matches23) |
|
assert np.all(matches[(image_id3, image_id4)] == matches34) |
|
|
|
|
|
|
|
db.close() |
|
|
|
if os.path.exists(args.database_path): |
|
os.remove(args.database_path) |
|
|
|
|
|
if __name__ == "__main__": |
|
example_usage() |
|
|