Vincentqyw
update: limit keypoints number
60ad158
raw
history blame
5.9 kB
from pathlib import Path
import subprocess
import logging
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models as models
from scipy.io import loadmat
from ..utils.base_model import BaseModel
logger = logging.getLogger(__name__)
EPS = 1e-6
class NetVLADLayer(nn.Module):
def __init__(self, input_dim=512, K=64, score_bias=False, intranorm=True):
super().__init__()
self.score_proj = nn.Conv1d(
input_dim, K, kernel_size=1, bias=score_bias
)
centers = nn.parameter.Parameter(torch.empty([input_dim, K]))
nn.init.xavier_uniform_(centers)
self.register_parameter("centers", centers)
self.intranorm = intranorm
self.output_dim = input_dim * K
def forward(self, x):
b = x.size(0)
scores = self.score_proj(x)
scores = F.softmax(scores, dim=1)
diff = x.unsqueeze(2) - self.centers.unsqueeze(0).unsqueeze(-1)
desc = (scores.unsqueeze(1) * diff).sum(dim=-1)
if self.intranorm:
# From the official MATLAB implementation.
desc = F.normalize(desc, dim=1)
desc = desc.view(b, -1)
desc = F.normalize(desc, dim=1)
return desc
class NetVLAD(BaseModel):
default_conf = {"model_name": "VGG16-NetVLAD-Pitts30K", "whiten": True}
required_inputs = ["image"]
# Models exported using
# https://github.com/uzh-rpg/netvlad_tf_open/blob/master/matlab/net_class2struct.m.
dir_models = {
"VGG16-NetVLAD-Pitts30K": "https://cvg-data.inf.ethz.ch/hloc/netvlad/Pitts30K_struct.mat",
"VGG16-NetVLAD-TokyoTM": "https://cvg-data.inf.ethz.ch/hloc/netvlad/TokyoTM_struct.mat",
}
def _init(self, conf):
assert conf["model_name"] in self.dir_models.keys()
# Download the checkpoint.
checkpoint = Path(
torch.hub.get_dir(), "netvlad", conf["model_name"] + ".mat"
)
if not checkpoint.exists():
checkpoint.parent.mkdir(exist_ok=True, parents=True)
link = self.dir_models[conf["model_name"]]
cmd = ["wget", link, "-O", str(checkpoint)]
logger.info(f"Downloading the NetVLAD model with `{cmd}`.")
subprocess.run(cmd, check=True)
# Create the network.
# Remove classification head.
backbone = list(models.vgg16().children())[0]
# Remove last ReLU + MaxPool2d.
self.backbone = nn.Sequential(*list(backbone.children())[:-2])
self.netvlad = NetVLADLayer()
if conf["whiten"]:
self.whiten = nn.Linear(self.netvlad.output_dim, 4096)
# Parse MATLAB weights using https://github.com/uzh-rpg/netvlad_tf_open
mat = loadmat(checkpoint, struct_as_record=False, squeeze_me=True)
# CNN weights.
for layer, mat_layer in zip(
self.backbone.children(), mat["net"].layers
):
if isinstance(layer, nn.Conv2d):
w = mat_layer.weights[0] # Shape: S x S x IN x OUT
b = mat_layer.weights[1] # Shape: OUT
# Prepare for PyTorch - enforce float32 and right shape.
# w should have shape: OUT x IN x S x S
# b should have shape: OUT
w = torch.tensor(w).float().permute([3, 2, 0, 1])
b = torch.tensor(b).float()
# Update layer weights.
layer.weight = nn.Parameter(w)
layer.bias = nn.Parameter(b)
# NetVLAD weights.
score_w = mat["net"].layers[30].weights[0] # D x K
# centers are stored as opposite in official MATLAB code
center_w = -mat["net"].layers[30].weights[1] # D x K
# Prepare for PyTorch - make sure it is float32 and has right shape.
# score_w should have shape K x D x 1
# center_w should have shape D x K
score_w = torch.tensor(score_w).float().permute([1, 0]).unsqueeze(-1)
center_w = torch.tensor(center_w).float()
# Update layer weights.
self.netvlad.score_proj.weight = nn.Parameter(score_w)
self.netvlad.centers = nn.Parameter(center_w)
# Whitening weights.
if conf["whiten"]:
w = mat["net"].layers[33].weights[0] # Shape: 1 x 1 x IN x OUT
b = mat["net"].layers[33].weights[1] # Shape: OUT
# Prepare for PyTorch - make sure it is float32 and has right shape
w = torch.tensor(w).float().squeeze().permute([1, 0]) # OUT x IN
b = torch.tensor(b.squeeze()).float() # Shape: OUT
# Update layer weights.
self.whiten.weight = nn.Parameter(w)
self.whiten.bias = nn.Parameter(b)
# Preprocessing parameters.
self.preprocess = {
"mean": mat["net"].meta.normalization.averageImage[0, 0],
"std": np.array([1, 1, 1], dtype=np.float32),
}
def _forward(self, data):
image = data["image"]
assert image.shape[1] == 3
assert image.min() >= -EPS and image.max() <= 1 + EPS
image = torch.clamp(image * 255, 0.0, 255.0) # Input should be 0-255.
mean = self.preprocess["mean"]
std = self.preprocess["std"]
image = image - image.new_tensor(mean).view(1, -1, 1, 1)
image = image / image.new_tensor(std).view(1, -1, 1, 1)
# Feature extraction.
descriptors = self.backbone(image)
b, c, _, _ = descriptors.size()
descriptors = descriptors.view(b, c, -1)
# NetVLAD layer.
descriptors = F.normalize(descriptors, dim=1) # Pre-normalization.
desc = self.netvlad(descriptors)
# Whiten if needed.
if hasattr(self, "whiten"):
desc = self.whiten(desc)
desc = F.normalize(desc, dim=1) # Final L2 normalization.
return {"global_descriptor": desc}