|
import torch |
|
|
|
from ..utils.base_model import BaseModel |
|
|
|
|
|
def find_nn(sim, ratio_thresh, distance_thresh): |
|
sim_nn, ind_nn = sim.topk(2 if ratio_thresh else 1, dim=-1, largest=True) |
|
dist_nn = 2 * (1 - sim_nn) |
|
mask = torch.ones(ind_nn.shape[:-1], dtype=torch.bool, device=sim.device) |
|
if ratio_thresh: |
|
mask = mask & (dist_nn[..., 0] <= (ratio_thresh**2) * dist_nn[..., 1]) |
|
if distance_thresh: |
|
mask = mask & (dist_nn[..., 0] <= distance_thresh**2) |
|
matches = torch.where(mask, ind_nn[..., 0], ind_nn.new_tensor(-1)) |
|
scores = torch.where(mask, (sim_nn[..., 0] + 1) / 2, sim_nn.new_tensor(0)) |
|
return matches, scores |
|
|
|
|
|
def mutual_check(m0, m1): |
|
inds0 = torch.arange(m0.shape[-1], device=m0.device) |
|
loop = torch.gather(m1, -1, torch.where(m0 > -1, m0, m0.new_tensor(0))) |
|
ok = (m0 > -1) & (inds0 == loop) |
|
m0_new = torch.where(ok, m0, m0.new_tensor(-1)) |
|
return m0_new |
|
|
|
|
|
class NearestNeighbor(BaseModel): |
|
default_conf = { |
|
"ratio_threshold": None, |
|
"distance_threshold": None, |
|
"do_mutual_check": True, |
|
} |
|
required_inputs = ["descriptors0", "descriptors1"] |
|
|
|
def _init(self, conf): |
|
pass |
|
|
|
def _forward(self, data): |
|
if data["descriptors0"].size(-1) == 0 or data["descriptors1"].size(-1) == 0: |
|
matches0 = torch.full( |
|
data["descriptors0"].shape[:2], -1, device=data["descriptors0"].device |
|
) |
|
return { |
|
"matches0": matches0, |
|
"matching_scores0": torch.zeros_like(matches0), |
|
} |
|
ratio_threshold = self.conf["ratio_threshold"] |
|
if data["descriptors0"].size(-1) == 1 or data["descriptors1"].size(-1) == 1: |
|
ratio_threshold = None |
|
sim = torch.einsum("bdn,bdm->bnm", data["descriptors0"], data["descriptors1"]) |
|
matches0, scores0 = find_nn( |
|
sim, ratio_threshold, self.conf["distance_threshold"] |
|
) |
|
if self.conf["do_mutual_check"]: |
|
matches1, scores1 = find_nn( |
|
sim.transpose(1, 2), ratio_threshold, self.conf["distance_threshold"] |
|
) |
|
matches0 = mutual_check(matches0, matches1) |
|
return { |
|
"matches0": matches0, |
|
"matching_scores0": scores0, |
|
} |
|
|