|
import sys |
|
from pathlib import Path |
|
import torchvision.transforms as tvf |
|
|
|
from ..utils.base_model import BaseModel |
|
|
|
r2d2_path = Path(__file__).parent / "../../third_party/r2d2" |
|
sys.path.append(str(r2d2_path)) |
|
from extract import load_network, NonMaxSuppression, extract_multiscale |
|
|
|
|
|
class R2D2(BaseModel): |
|
default_conf = { |
|
"model_name": "r2d2_WASF_N16.pt", |
|
"max_keypoints": 5000, |
|
"scale_factor": 2**0.25, |
|
"min_size": 256, |
|
"max_size": 1024, |
|
"min_scale": 0, |
|
"max_scale": 1, |
|
"reliability_threshold": 0.7, |
|
"repetability_threshold": 0.7, |
|
} |
|
required_inputs = ["image"] |
|
|
|
def _init(self, conf): |
|
model_fn = r2d2_path / "models" / conf["model_name"] |
|
self.norm_rgb = tvf.Normalize( |
|
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] |
|
) |
|
self.net = load_network(model_fn) |
|
self.detector = NonMaxSuppression( |
|
rel_thr=conf["reliability_threshold"], |
|
rep_thr=conf["repetability_threshold"], |
|
) |
|
|
|
def _forward(self, data): |
|
img = data["image"] |
|
img = self.norm_rgb(img) |
|
|
|
xys, desc, scores = extract_multiscale( |
|
self.net, |
|
img, |
|
self.detector, |
|
scale_f=self.conf["scale_factor"], |
|
min_size=self.conf["min_size"], |
|
max_size=self.conf["max_size"], |
|
min_scale=self.conf["min_scale"], |
|
max_scale=self.conf["max_scale"], |
|
) |
|
idxs = scores.argsort()[-self.conf["max_keypoints"] or None :] |
|
xy = xys[idxs, :2] |
|
desc = desc[idxs].t() |
|
scores = scores[idxs] |
|
|
|
pred = { |
|
"keypoints": xy[None], |
|
"descriptors": desc[None], |
|
"scores": scores[None], |
|
} |
|
return pred |
|
|