|
import numpy as np |
|
import torch |
|
from dkm.utils import * |
|
from PIL import Image |
|
from tqdm import tqdm |
|
import torch.nn.functional as F |
|
|
|
|
|
class Megadepth1500Benchmark: |
|
def __init__(self, data_root="data/megadepth", scene_names=None) -> None: |
|
if scene_names is None: |
|
self.scene_names = [ |
|
"0015_0.1_0.3.npz", |
|
"0015_0.3_0.5.npz", |
|
"0022_0.1_0.3.npz", |
|
"0022_0.3_0.5.npz", |
|
"0022_0.5_0.7.npz", |
|
] |
|
else: |
|
self.scene_names = scene_names |
|
self.scenes = [ |
|
np.load(f"{data_root}/{scene}", allow_pickle=True) |
|
for scene in self.scene_names |
|
] |
|
self.data_root = data_root |
|
|
|
def benchmark(self, model): |
|
with torch.no_grad(): |
|
data_root = self.data_root |
|
tot_e_t, tot_e_R, tot_e_pose = [], [], [] |
|
for scene_ind in range(len(self.scenes)): |
|
scene = self.scenes[scene_ind] |
|
pairs = scene["pair_infos"] |
|
intrinsics = scene["intrinsics"] |
|
poses = scene["poses"] |
|
im_paths = scene["image_paths"] |
|
pair_inds = range(len(pairs)) |
|
for pairind in tqdm(pair_inds): |
|
idx1, idx2 = pairs[pairind][0] |
|
K1 = intrinsics[idx1].copy() |
|
T1 = poses[idx1].copy() |
|
R1, t1 = T1[:3, :3], T1[:3, 3] |
|
K2 = intrinsics[idx2].copy() |
|
T2 = poses[idx2].copy() |
|
R2, t2 = T2[:3, :3], T2[:3, 3] |
|
R, t = compute_relative_pose(R1, t1, R2, t2) |
|
im1_path = f"{data_root}/{im_paths[idx1]}" |
|
im2_path = f"{data_root}/{im_paths[idx2]}" |
|
im1 = Image.open(im1_path) |
|
w1, h1 = im1.size |
|
im2 = Image.open(im2_path) |
|
w2, h2 = im2.size |
|
scale1 = 1200 / max(w1, h1) |
|
scale2 = 1200 / max(w2, h2) |
|
w1, h1 = scale1 * w1, scale1 * h1 |
|
w2, h2 = scale2 * w2, scale2 * h2 |
|
K1[:2] = K1[:2] * scale1 |
|
K2[:2] = K2[:2] * scale2 |
|
dense_matches, dense_certainty = model.match(im1_path, im2_path) |
|
sparse_matches, _ = model.sample( |
|
dense_matches, dense_certainty, 5000 |
|
) |
|
kpts1 = sparse_matches[:, :2] |
|
kpts1 = torch.stack( |
|
( |
|
w1 * (kpts1[:, 0] + 1) / 2, |
|
h1 * (kpts1[:, 1] + 1) / 2, |
|
), |
|
axis=-1, |
|
) |
|
kpts2 = sparse_matches[:, 2:] |
|
kpts2 = torch.stack( |
|
( |
|
w2 * (kpts2[:, 0] + 1) / 2, |
|
h2 * (kpts2[:, 1] + 1) / 2, |
|
), |
|
axis=-1, |
|
) |
|
for _ in range(5): |
|
shuffling = np.random.permutation(np.arange(len(kpts1))) |
|
kpts1 = kpts1[shuffling] |
|
kpts2 = kpts2[shuffling] |
|
try: |
|
norm_threshold = 0.5 / ( |
|
np.mean(np.abs(K1[:2, :2])) |
|
+ np.mean(np.abs(K2[:2, :2])) |
|
) |
|
R_est, t_est, mask = estimate_pose( |
|
kpts1.cpu().numpy(), |
|
kpts2.cpu().numpy(), |
|
K1, |
|
K2, |
|
norm_threshold, |
|
conf=0.99999, |
|
) |
|
T1_to_2_est = np.concatenate((R_est, t_est), axis=-1) |
|
e_t, e_R = compute_pose_error(T1_to_2_est, R, t) |
|
e_pose = max(e_t, e_R) |
|
except Exception as e: |
|
print(repr(e)) |
|
e_t, e_R = 90, 90 |
|
e_pose = max(e_t, e_R) |
|
tot_e_t.append(e_t) |
|
tot_e_R.append(e_R) |
|
tot_e_pose.append(e_pose) |
|
tot_e_pose = np.array(tot_e_pose) |
|
thresholds = [5, 10, 20] |
|
auc = pose_auc(tot_e_pose, thresholds) |
|
acc_5 = (tot_e_pose < 5).mean() |
|
acc_10 = (tot_e_pose < 10).mean() |
|
acc_15 = (tot_e_pose < 15).mean() |
|
acc_20 = (tot_e_pose < 20).mean() |
|
map_5 = acc_5 |
|
map_10 = np.mean([acc_5, acc_10]) |
|
map_20 = np.mean([acc_5, acc_10, acc_15, acc_20]) |
|
return { |
|
"auc_5": auc[0], |
|
"auc_10": auc[1], |
|
"auc_20": auc[2], |
|
"map_5": map_5, |
|
"map_10": map_10, |
|
"map_20": map_20, |
|
} |
|
|