lixiang46
commited on
Commit
•
6c91ee7
1
Parent(s):
01bb574
update
Browse files- annotator/__init__.py +0 -0
- annotator/canny/__init__.py +6 -0
- annotator/midas/LICENSE +21 -0
- annotator/midas/__init__.py +35 -0
- annotator/midas/api.py +169 -0
- annotator/midas/midas/__init__.py +0 -0
- annotator/midas/midas/base_model.py +16 -0
- annotator/midas/midas/blocks.py +342 -0
- annotator/midas/midas/dpt_depth.py +109 -0
- annotator/midas/midas/midas_net.py +76 -0
- annotator/midas/midas/midas_net_custom.py +128 -0
- annotator/midas/midas/transforms.py +234 -0
- annotator/midas/midas/vit.py +491 -0
- annotator/midas/utils.py +189 -0
- annotator/util.py +129 -0
- app.py +111 -91
- kolors/__pycache__/__init__.cpython-38.pyc +0 -0
- kolors/models/__pycache__/__init__.cpython-38.pyc +0 -0
- kolors/models/__pycache__/configuration_chatglm.cpython-38.pyc +0 -0
- kolors/models/__pycache__/modeling_chatglm.cpython-38.pyc +0 -0
- kolors/models/__pycache__/tokenization_chatglm.cpython-38.pyc +0 -0
- kolors/models/__pycache__/unet_2d_condition.cpython-38.pyc +0 -0
- kolors/models/controlnet.py +887 -0
- kolors/pipelines/__pycache__/__init__.cpython-38.pyc +0 -0
- kolors/pipelines/__pycache__/pipeline_stable_diffusion_xl_chatglm_256.cpython-38.pyc +0 -0
- kolors/pipelines/__pycache__/pipeline_stable_diffusion_xl_chatglm_256_ipadapter.cpython-38.pyc +0 -0
- kolors/pipelines/pipeline_controlnet_xl_kolors_img2img.py +1365 -0
- kolors/pipelines/pipeline_stable_diffusion_xl_chatglm_256_inpainting.py +1790 -0
annotator/__init__.py
ADDED
File without changes
|
annotator/canny/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
|
3 |
+
|
4 |
+
class CannyDetector:
|
5 |
+
def __call__(self, img, low_threshold, high_threshold):
|
6 |
+
return cv2.Canny(img, low_threshold, high_threshold)
|
annotator/midas/LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2019 Intel ISL (Intel Intelligent Systems Lab)
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
annotator/midas/__init__.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Midas Depth Estimation
|
2 |
+
# From https://github.com/isl-org/MiDaS
|
3 |
+
# MIT LICENSE
|
4 |
+
|
5 |
+
import cv2
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
|
9 |
+
from einops import rearrange
|
10 |
+
from .api import MiDaSInference
|
11 |
+
|
12 |
+
|
13 |
+
class MidasDetector:
|
14 |
+
def __init__(self):
|
15 |
+
self.model = MiDaSInference(model_type="dpt_hybrid").cuda()
|
16 |
+
self.rng = np.random.RandomState(0)
|
17 |
+
|
18 |
+
def __call__(self, input_image):
|
19 |
+
assert input_image.ndim == 3
|
20 |
+
image_depth = input_image
|
21 |
+
with torch.no_grad():
|
22 |
+
image_depth = torch.from_numpy(image_depth).float().cuda()
|
23 |
+
image_depth = image_depth / 127.5 - 1.0
|
24 |
+
image_depth = rearrange(image_depth, 'h w c -> 1 c h w')
|
25 |
+
depth = self.model(image_depth)[0]
|
26 |
+
|
27 |
+
depth -= torch.min(depth)
|
28 |
+
depth /= torch.max(depth)
|
29 |
+
depth = depth.cpu().numpy()
|
30 |
+
depth_image = (depth * 255.0).clip(0, 255).astype(np.uint8)
|
31 |
+
|
32 |
+
return depth_image
|
33 |
+
|
34 |
+
|
35 |
+
|
annotator/midas/api.py
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# based on https://github.com/isl-org/MiDaS
|
2 |
+
|
3 |
+
import cv2
|
4 |
+
import os
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
from torchvision.transforms import Compose
|
8 |
+
|
9 |
+
from .midas.dpt_depth import DPTDepthModel
|
10 |
+
from .midas.midas_net import MidasNet
|
11 |
+
from .midas.midas_net_custom import MidasNet_small
|
12 |
+
from .midas.transforms import Resize, NormalizeImage, PrepareForNet
|
13 |
+
from annotator.util import annotator_ckpts_path
|
14 |
+
|
15 |
+
|
16 |
+
ISL_PATHS = {
|
17 |
+
"dpt_large": os.path.join(annotator_ckpts_path, "dpt_large-midas-2f21e586.pt"),
|
18 |
+
"dpt_hybrid": os.path.join(annotator_ckpts_path, "dpt_hybrid-midas-501f0c75.pt"),
|
19 |
+
"midas_v21": "",
|
20 |
+
"midas_v21_small": "",
|
21 |
+
}
|
22 |
+
|
23 |
+
remote_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/dpt_hybrid-midas-501f0c75.pt"
|
24 |
+
|
25 |
+
|
26 |
+
def disabled_train(self, mode=True):
|
27 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
28 |
+
does not change anymore."""
|
29 |
+
return self
|
30 |
+
|
31 |
+
|
32 |
+
def load_midas_transform(model_type):
|
33 |
+
# https://github.com/isl-org/MiDaS/blob/master/run.py
|
34 |
+
# load transform only
|
35 |
+
if model_type == "dpt_large": # DPT-Large
|
36 |
+
net_w, net_h = 384, 384
|
37 |
+
resize_mode = "minimal"
|
38 |
+
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
39 |
+
|
40 |
+
elif model_type == "dpt_hybrid": # DPT-Hybrid
|
41 |
+
net_w, net_h = 384, 384
|
42 |
+
resize_mode = "minimal"
|
43 |
+
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
44 |
+
|
45 |
+
elif model_type == "midas_v21":
|
46 |
+
net_w, net_h = 384, 384
|
47 |
+
resize_mode = "upper_bound"
|
48 |
+
normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
49 |
+
|
50 |
+
elif model_type == "midas_v21_small":
|
51 |
+
net_w, net_h = 256, 256
|
52 |
+
resize_mode = "upper_bound"
|
53 |
+
normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
54 |
+
|
55 |
+
else:
|
56 |
+
assert False, f"model_type '{model_type}' not implemented, use: --model_type large"
|
57 |
+
|
58 |
+
transform = Compose(
|
59 |
+
[
|
60 |
+
Resize(
|
61 |
+
net_w,
|
62 |
+
net_h,
|
63 |
+
resize_target=None,
|
64 |
+
keep_aspect_ratio=True,
|
65 |
+
ensure_multiple_of=32,
|
66 |
+
resize_method=resize_mode,
|
67 |
+
image_interpolation_method=cv2.INTER_CUBIC,
|
68 |
+
),
|
69 |
+
normalization,
|
70 |
+
PrepareForNet(),
|
71 |
+
]
|
72 |
+
)
|
73 |
+
|
74 |
+
return transform
|
75 |
+
|
76 |
+
|
77 |
+
def load_model(model_type):
|
78 |
+
# https://github.com/isl-org/MiDaS/blob/master/run.py
|
79 |
+
# load network
|
80 |
+
model_path = ISL_PATHS[model_type]
|
81 |
+
if model_type == "dpt_large": # DPT-Large
|
82 |
+
model = DPTDepthModel(
|
83 |
+
path=model_path,
|
84 |
+
backbone="vitl16_384",
|
85 |
+
non_negative=True,
|
86 |
+
)
|
87 |
+
net_w, net_h = 384, 384
|
88 |
+
resize_mode = "minimal"
|
89 |
+
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
90 |
+
|
91 |
+
elif model_type == "dpt_hybrid": # DPT-Hybrid
|
92 |
+
if not os.path.exists(model_path):
|
93 |
+
from basicsr.utils.download_util import load_file_from_url
|
94 |
+
load_file_from_url(remote_model_path, model_dir=annotator_ckpts_path)
|
95 |
+
|
96 |
+
model = DPTDepthModel(
|
97 |
+
path=model_path,
|
98 |
+
backbone="vitb_rn50_384",
|
99 |
+
non_negative=True,
|
100 |
+
)
|
101 |
+
net_w, net_h = 384, 384
|
102 |
+
resize_mode = "minimal"
|
103 |
+
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
104 |
+
|
105 |
+
elif model_type == "midas_v21":
|
106 |
+
model = MidasNet(model_path, non_negative=True)
|
107 |
+
net_w, net_h = 384, 384
|
108 |
+
resize_mode = "upper_bound"
|
109 |
+
normalization = NormalizeImage(
|
110 |
+
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
|
111 |
+
)
|
112 |
+
|
113 |
+
elif model_type == "midas_v21_small":
|
114 |
+
model = MidasNet_small(model_path, features=64, backbone="efficientnet_lite3", exportable=True,
|
115 |
+
non_negative=True, blocks={'expand': True})
|
116 |
+
net_w, net_h = 256, 256
|
117 |
+
resize_mode = "upper_bound"
|
118 |
+
normalization = NormalizeImage(
|
119 |
+
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
|
120 |
+
)
|
121 |
+
|
122 |
+
else:
|
123 |
+
print(f"model_type '{model_type}' not implemented, use: --model_type large")
|
124 |
+
assert False
|
125 |
+
|
126 |
+
transform = Compose(
|
127 |
+
[
|
128 |
+
Resize(
|
129 |
+
net_w,
|
130 |
+
net_h,
|
131 |
+
resize_target=None,
|
132 |
+
keep_aspect_ratio=True,
|
133 |
+
ensure_multiple_of=32,
|
134 |
+
resize_method=resize_mode,
|
135 |
+
image_interpolation_method=cv2.INTER_CUBIC,
|
136 |
+
),
|
137 |
+
normalization,
|
138 |
+
PrepareForNet(),
|
139 |
+
]
|
140 |
+
)
|
141 |
+
|
142 |
+
return model.eval(), transform
|
143 |
+
|
144 |
+
|
145 |
+
class MiDaSInference(nn.Module):
|
146 |
+
MODEL_TYPES_TORCH_HUB = [
|
147 |
+
"DPT_Large",
|
148 |
+
"DPT_Hybrid",
|
149 |
+
"MiDaS_small"
|
150 |
+
]
|
151 |
+
MODEL_TYPES_ISL = [
|
152 |
+
"dpt_large",
|
153 |
+
"dpt_hybrid",
|
154 |
+
"midas_v21",
|
155 |
+
"midas_v21_small",
|
156 |
+
]
|
157 |
+
|
158 |
+
def __init__(self, model_type):
|
159 |
+
super().__init__()
|
160 |
+
assert (model_type in self.MODEL_TYPES_ISL)
|
161 |
+
model, _ = load_model(model_type)
|
162 |
+
self.model = model
|
163 |
+
self.model.train = disabled_train
|
164 |
+
|
165 |
+
def forward(self, x):
|
166 |
+
with torch.no_grad():
|
167 |
+
prediction = self.model(x)
|
168 |
+
return prediction
|
169 |
+
|
annotator/midas/midas/__init__.py
ADDED
File without changes
|
annotator/midas/midas/base_model.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
|
4 |
+
class BaseModel(torch.nn.Module):
|
5 |
+
def load(self, path):
|
6 |
+
"""Load model from file.
|
7 |
+
|
8 |
+
Args:
|
9 |
+
path (str): file path
|
10 |
+
"""
|
11 |
+
parameters = torch.load(path, map_location=torch.device('cpu'))
|
12 |
+
|
13 |
+
if "optimizer" in parameters:
|
14 |
+
parameters = parameters["model"]
|
15 |
+
|
16 |
+
self.load_state_dict(parameters)
|
annotator/midas/midas/blocks.py
ADDED
@@ -0,0 +1,342 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
from .vit import (
|
5 |
+
_make_pretrained_vitb_rn50_384,
|
6 |
+
_make_pretrained_vitl16_384,
|
7 |
+
_make_pretrained_vitb16_384,
|
8 |
+
forward_vit,
|
9 |
+
)
|
10 |
+
|
11 |
+
def _make_encoder(backbone, features, use_pretrained, groups=1, expand=False, exportable=True, hooks=None, use_vit_only=False, use_readout="ignore",):
|
12 |
+
if backbone == "vitl16_384":
|
13 |
+
pretrained = _make_pretrained_vitl16_384(
|
14 |
+
use_pretrained, hooks=hooks, use_readout=use_readout
|
15 |
+
)
|
16 |
+
scratch = _make_scratch(
|
17 |
+
[256, 512, 1024, 1024], features, groups=groups, expand=expand
|
18 |
+
) # ViT-L/16 - 85.0% Top1 (backbone)
|
19 |
+
elif backbone == "vitb_rn50_384":
|
20 |
+
pretrained = _make_pretrained_vitb_rn50_384(
|
21 |
+
use_pretrained,
|
22 |
+
hooks=hooks,
|
23 |
+
use_vit_only=use_vit_only,
|
24 |
+
use_readout=use_readout,
|
25 |
+
)
|
26 |
+
scratch = _make_scratch(
|
27 |
+
[256, 512, 768, 768], features, groups=groups, expand=expand
|
28 |
+
) # ViT-H/16 - 85.0% Top1 (backbone)
|
29 |
+
elif backbone == "vitb16_384":
|
30 |
+
pretrained = _make_pretrained_vitb16_384(
|
31 |
+
use_pretrained, hooks=hooks, use_readout=use_readout
|
32 |
+
)
|
33 |
+
scratch = _make_scratch(
|
34 |
+
[96, 192, 384, 768], features, groups=groups, expand=expand
|
35 |
+
) # ViT-B/16 - 84.6% Top1 (backbone)
|
36 |
+
elif backbone == "resnext101_wsl":
|
37 |
+
pretrained = _make_pretrained_resnext101_wsl(use_pretrained)
|
38 |
+
scratch = _make_scratch([256, 512, 1024, 2048], features, groups=groups, expand=expand) # efficientnet_lite3
|
39 |
+
elif backbone == "efficientnet_lite3":
|
40 |
+
pretrained = _make_pretrained_efficientnet_lite3(use_pretrained, exportable=exportable)
|
41 |
+
scratch = _make_scratch([32, 48, 136, 384], features, groups=groups, expand=expand) # efficientnet_lite3
|
42 |
+
else:
|
43 |
+
print(f"Backbone '{backbone}' not implemented")
|
44 |
+
assert False
|
45 |
+
|
46 |
+
return pretrained, scratch
|
47 |
+
|
48 |
+
|
49 |
+
def _make_scratch(in_shape, out_shape, groups=1, expand=False):
|
50 |
+
scratch = nn.Module()
|
51 |
+
|
52 |
+
out_shape1 = out_shape
|
53 |
+
out_shape2 = out_shape
|
54 |
+
out_shape3 = out_shape
|
55 |
+
out_shape4 = out_shape
|
56 |
+
if expand==True:
|
57 |
+
out_shape1 = out_shape
|
58 |
+
out_shape2 = out_shape*2
|
59 |
+
out_shape3 = out_shape*4
|
60 |
+
out_shape4 = out_shape*8
|
61 |
+
|
62 |
+
scratch.layer1_rn = nn.Conv2d(
|
63 |
+
in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
|
64 |
+
)
|
65 |
+
scratch.layer2_rn = nn.Conv2d(
|
66 |
+
in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
|
67 |
+
)
|
68 |
+
scratch.layer3_rn = nn.Conv2d(
|
69 |
+
in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
|
70 |
+
)
|
71 |
+
scratch.layer4_rn = nn.Conv2d(
|
72 |
+
in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
|
73 |
+
)
|
74 |
+
|
75 |
+
return scratch
|
76 |
+
|
77 |
+
|
78 |
+
def _make_pretrained_efficientnet_lite3(use_pretrained, exportable=False):
|
79 |
+
efficientnet = torch.hub.load(
|
80 |
+
"rwightman/gen-efficientnet-pytorch",
|
81 |
+
"tf_efficientnet_lite3",
|
82 |
+
pretrained=use_pretrained,
|
83 |
+
exportable=exportable
|
84 |
+
)
|
85 |
+
return _make_efficientnet_backbone(efficientnet)
|
86 |
+
|
87 |
+
|
88 |
+
def _make_efficientnet_backbone(effnet):
|
89 |
+
pretrained = nn.Module()
|
90 |
+
|
91 |
+
pretrained.layer1 = nn.Sequential(
|
92 |
+
effnet.conv_stem, effnet.bn1, effnet.act1, *effnet.blocks[0:2]
|
93 |
+
)
|
94 |
+
pretrained.layer2 = nn.Sequential(*effnet.blocks[2:3])
|
95 |
+
pretrained.layer3 = nn.Sequential(*effnet.blocks[3:5])
|
96 |
+
pretrained.layer4 = nn.Sequential(*effnet.blocks[5:9])
|
97 |
+
|
98 |
+
return pretrained
|
99 |
+
|
100 |
+
|
101 |
+
def _make_resnet_backbone(resnet):
|
102 |
+
pretrained = nn.Module()
|
103 |
+
pretrained.layer1 = nn.Sequential(
|
104 |
+
resnet.conv1, resnet.bn1, resnet.relu, resnet.maxpool, resnet.layer1
|
105 |
+
)
|
106 |
+
|
107 |
+
pretrained.layer2 = resnet.layer2
|
108 |
+
pretrained.layer3 = resnet.layer3
|
109 |
+
pretrained.layer4 = resnet.layer4
|
110 |
+
|
111 |
+
return pretrained
|
112 |
+
|
113 |
+
|
114 |
+
def _make_pretrained_resnext101_wsl(use_pretrained):
|
115 |
+
resnet = torch.hub.load("facebookresearch/WSL-Images", "resnext101_32x8d_wsl")
|
116 |
+
return _make_resnet_backbone(resnet)
|
117 |
+
|
118 |
+
|
119 |
+
|
120 |
+
class Interpolate(nn.Module):
|
121 |
+
"""Interpolation module.
|
122 |
+
"""
|
123 |
+
|
124 |
+
def __init__(self, scale_factor, mode, align_corners=False):
|
125 |
+
"""Init.
|
126 |
+
|
127 |
+
Args:
|
128 |
+
scale_factor (float): scaling
|
129 |
+
mode (str): interpolation mode
|
130 |
+
"""
|
131 |
+
super(Interpolate, self).__init__()
|
132 |
+
|
133 |
+
self.interp = nn.functional.interpolate
|
134 |
+
self.scale_factor = scale_factor
|
135 |
+
self.mode = mode
|
136 |
+
self.align_corners = align_corners
|
137 |
+
|
138 |
+
def forward(self, x):
|
139 |
+
"""Forward pass.
|
140 |
+
|
141 |
+
Args:
|
142 |
+
x (tensor): input
|
143 |
+
|
144 |
+
Returns:
|
145 |
+
tensor: interpolated data
|
146 |
+
"""
|
147 |
+
|
148 |
+
x = self.interp(
|
149 |
+
x, scale_factor=self.scale_factor, mode=self.mode, align_corners=self.align_corners
|
150 |
+
)
|
151 |
+
|
152 |
+
return x
|
153 |
+
|
154 |
+
|
155 |
+
class ResidualConvUnit(nn.Module):
|
156 |
+
"""Residual convolution module.
|
157 |
+
"""
|
158 |
+
|
159 |
+
def __init__(self, features):
|
160 |
+
"""Init.
|
161 |
+
|
162 |
+
Args:
|
163 |
+
features (int): number of features
|
164 |
+
"""
|
165 |
+
super().__init__()
|
166 |
+
|
167 |
+
self.conv1 = nn.Conv2d(
|
168 |
+
features, features, kernel_size=3, stride=1, padding=1, bias=True
|
169 |
+
)
|
170 |
+
|
171 |
+
self.conv2 = nn.Conv2d(
|
172 |
+
features, features, kernel_size=3, stride=1, padding=1, bias=True
|
173 |
+
)
|
174 |
+
|
175 |
+
self.relu = nn.ReLU(inplace=True)
|
176 |
+
|
177 |
+
def forward(self, x):
|
178 |
+
"""Forward pass.
|
179 |
+
|
180 |
+
Args:
|
181 |
+
x (tensor): input
|
182 |
+
|
183 |
+
Returns:
|
184 |
+
tensor: output
|
185 |
+
"""
|
186 |
+
out = self.relu(x)
|
187 |
+
out = self.conv1(out)
|
188 |
+
out = self.relu(out)
|
189 |
+
out = self.conv2(out)
|
190 |
+
|
191 |
+
return out + x
|
192 |
+
|
193 |
+
|
194 |
+
class FeatureFusionBlock(nn.Module):
|
195 |
+
"""Feature fusion block.
|
196 |
+
"""
|
197 |
+
|
198 |
+
def __init__(self, features):
|
199 |
+
"""Init.
|
200 |
+
|
201 |
+
Args:
|
202 |
+
features (int): number of features
|
203 |
+
"""
|
204 |
+
super(FeatureFusionBlock, self).__init__()
|
205 |
+
|
206 |
+
self.resConfUnit1 = ResidualConvUnit(features)
|
207 |
+
self.resConfUnit2 = ResidualConvUnit(features)
|
208 |
+
|
209 |
+
def forward(self, *xs):
|
210 |
+
"""Forward pass.
|
211 |
+
|
212 |
+
Returns:
|
213 |
+
tensor: output
|
214 |
+
"""
|
215 |
+
output = xs[0]
|
216 |
+
|
217 |
+
if len(xs) == 2:
|
218 |
+
output += self.resConfUnit1(xs[1])
|
219 |
+
|
220 |
+
output = self.resConfUnit2(output)
|
221 |
+
|
222 |
+
output = nn.functional.interpolate(
|
223 |
+
output, scale_factor=2, mode="bilinear", align_corners=True
|
224 |
+
)
|
225 |
+
|
226 |
+
return output
|
227 |
+
|
228 |
+
|
229 |
+
|
230 |
+
|
231 |
+
class ResidualConvUnit_custom(nn.Module):
|
232 |
+
"""Residual convolution module.
|
233 |
+
"""
|
234 |
+
|
235 |
+
def __init__(self, features, activation, bn):
|
236 |
+
"""Init.
|
237 |
+
|
238 |
+
Args:
|
239 |
+
features (int): number of features
|
240 |
+
"""
|
241 |
+
super().__init__()
|
242 |
+
|
243 |
+
self.bn = bn
|
244 |
+
|
245 |
+
self.groups=1
|
246 |
+
|
247 |
+
self.conv1 = nn.Conv2d(
|
248 |
+
features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups
|
249 |
+
)
|
250 |
+
|
251 |
+
self.conv2 = nn.Conv2d(
|
252 |
+
features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups
|
253 |
+
)
|
254 |
+
|
255 |
+
if self.bn==True:
|
256 |
+
self.bn1 = nn.BatchNorm2d(features)
|
257 |
+
self.bn2 = nn.BatchNorm2d(features)
|
258 |
+
|
259 |
+
self.activation = activation
|
260 |
+
|
261 |
+
self.skip_add = nn.quantized.FloatFunctional()
|
262 |
+
|
263 |
+
def forward(self, x):
|
264 |
+
"""Forward pass.
|
265 |
+
|
266 |
+
Args:
|
267 |
+
x (tensor): input
|
268 |
+
|
269 |
+
Returns:
|
270 |
+
tensor: output
|
271 |
+
"""
|
272 |
+
|
273 |
+
out = self.activation(x)
|
274 |
+
out = self.conv1(out)
|
275 |
+
if self.bn==True:
|
276 |
+
out = self.bn1(out)
|
277 |
+
|
278 |
+
out = self.activation(out)
|
279 |
+
out = self.conv2(out)
|
280 |
+
if self.bn==True:
|
281 |
+
out = self.bn2(out)
|
282 |
+
|
283 |
+
if self.groups > 1:
|
284 |
+
out = self.conv_merge(out)
|
285 |
+
|
286 |
+
return self.skip_add.add(out, x)
|
287 |
+
|
288 |
+
# return out + x
|
289 |
+
|
290 |
+
|
291 |
+
class FeatureFusionBlock_custom(nn.Module):
|
292 |
+
"""Feature fusion block.
|
293 |
+
"""
|
294 |
+
|
295 |
+
def __init__(self, features, activation, deconv=False, bn=False, expand=False, align_corners=True):
|
296 |
+
"""Init.
|
297 |
+
|
298 |
+
Args:
|
299 |
+
features (int): number of features
|
300 |
+
"""
|
301 |
+
super(FeatureFusionBlock_custom, self).__init__()
|
302 |
+
|
303 |
+
self.deconv = deconv
|
304 |
+
self.align_corners = align_corners
|
305 |
+
|
306 |
+
self.groups=1
|
307 |
+
|
308 |
+
self.expand = expand
|
309 |
+
out_features = features
|
310 |
+
if self.expand==True:
|
311 |
+
out_features = features//2
|
312 |
+
|
313 |
+
self.out_conv = nn.Conv2d(features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1)
|
314 |
+
|
315 |
+
self.resConfUnit1 = ResidualConvUnit_custom(features, activation, bn)
|
316 |
+
self.resConfUnit2 = ResidualConvUnit_custom(features, activation, bn)
|
317 |
+
|
318 |
+
self.skip_add = nn.quantized.FloatFunctional()
|
319 |
+
|
320 |
+
def forward(self, *xs):
|
321 |
+
"""Forward pass.
|
322 |
+
|
323 |
+
Returns:
|
324 |
+
tensor: output
|
325 |
+
"""
|
326 |
+
output = xs[0]
|
327 |
+
|
328 |
+
if len(xs) == 2:
|
329 |
+
res = self.resConfUnit1(xs[1])
|
330 |
+
output = self.skip_add.add(output, res)
|
331 |
+
# output += res
|
332 |
+
|
333 |
+
output = self.resConfUnit2(output)
|
334 |
+
|
335 |
+
output = nn.functional.interpolate(
|
336 |
+
output, scale_factor=2, mode="bilinear", align_corners=self.align_corners
|
337 |
+
)
|
338 |
+
|
339 |
+
output = self.out_conv(output)
|
340 |
+
|
341 |
+
return output
|
342 |
+
|
annotator/midas/midas/dpt_depth.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
from .base_model import BaseModel
|
6 |
+
from .blocks import (
|
7 |
+
FeatureFusionBlock,
|
8 |
+
FeatureFusionBlock_custom,
|
9 |
+
Interpolate,
|
10 |
+
_make_encoder,
|
11 |
+
forward_vit,
|
12 |
+
)
|
13 |
+
|
14 |
+
|
15 |
+
def _make_fusion_block(features, use_bn):
|
16 |
+
return FeatureFusionBlock_custom(
|
17 |
+
features,
|
18 |
+
nn.ReLU(False),
|
19 |
+
deconv=False,
|
20 |
+
bn=use_bn,
|
21 |
+
expand=False,
|
22 |
+
align_corners=True,
|
23 |
+
)
|
24 |
+
|
25 |
+
|
26 |
+
class DPT(BaseModel):
|
27 |
+
def __init__(
|
28 |
+
self,
|
29 |
+
head,
|
30 |
+
features=256,
|
31 |
+
backbone="vitb_rn50_384",
|
32 |
+
readout="project",
|
33 |
+
channels_last=False,
|
34 |
+
use_bn=False,
|
35 |
+
):
|
36 |
+
|
37 |
+
super(DPT, self).__init__()
|
38 |
+
|
39 |
+
self.channels_last = channels_last
|
40 |
+
|
41 |
+
hooks = {
|
42 |
+
"vitb_rn50_384": [0, 1, 8, 11],
|
43 |
+
"vitb16_384": [2, 5, 8, 11],
|
44 |
+
"vitl16_384": [5, 11, 17, 23],
|
45 |
+
}
|
46 |
+
|
47 |
+
# Instantiate backbone and reassemble blocks
|
48 |
+
self.pretrained, self.scratch = _make_encoder(
|
49 |
+
backbone,
|
50 |
+
features,
|
51 |
+
False, # Set to true of you want to train from scratch, uses ImageNet weights
|
52 |
+
groups=1,
|
53 |
+
expand=False,
|
54 |
+
exportable=False,
|
55 |
+
hooks=hooks[backbone],
|
56 |
+
use_readout=readout,
|
57 |
+
)
|
58 |
+
|
59 |
+
self.scratch.refinenet1 = _make_fusion_block(features, use_bn)
|
60 |
+
self.scratch.refinenet2 = _make_fusion_block(features, use_bn)
|
61 |
+
self.scratch.refinenet3 = _make_fusion_block(features, use_bn)
|
62 |
+
self.scratch.refinenet4 = _make_fusion_block(features, use_bn)
|
63 |
+
|
64 |
+
self.scratch.output_conv = head
|
65 |
+
|
66 |
+
|
67 |
+
def forward(self, x):
|
68 |
+
if self.channels_last == True:
|
69 |
+
x.contiguous(memory_format=torch.channels_last)
|
70 |
+
|
71 |
+
layer_1, layer_2, layer_3, layer_4 = forward_vit(self.pretrained, x)
|
72 |
+
|
73 |
+
layer_1_rn = self.scratch.layer1_rn(layer_1)
|
74 |
+
layer_2_rn = self.scratch.layer2_rn(layer_2)
|
75 |
+
layer_3_rn = self.scratch.layer3_rn(layer_3)
|
76 |
+
layer_4_rn = self.scratch.layer4_rn(layer_4)
|
77 |
+
|
78 |
+
path_4 = self.scratch.refinenet4(layer_4_rn)
|
79 |
+
path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
|
80 |
+
path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
|
81 |
+
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
|
82 |
+
|
83 |
+
out = self.scratch.output_conv(path_1)
|
84 |
+
|
85 |
+
return out
|
86 |
+
|
87 |
+
|
88 |
+
class DPTDepthModel(DPT):
|
89 |
+
def __init__(self, path=None, non_negative=True, **kwargs):
|
90 |
+
features = kwargs["features"] if "features" in kwargs else 256
|
91 |
+
|
92 |
+
head = nn.Sequential(
|
93 |
+
nn.Conv2d(features, features // 2, kernel_size=3, stride=1, padding=1),
|
94 |
+
Interpolate(scale_factor=2, mode="bilinear", align_corners=True),
|
95 |
+
nn.Conv2d(features // 2, 32, kernel_size=3, stride=1, padding=1),
|
96 |
+
nn.ReLU(True),
|
97 |
+
nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
|
98 |
+
nn.ReLU(True) if non_negative else nn.Identity(),
|
99 |
+
nn.Identity(),
|
100 |
+
)
|
101 |
+
|
102 |
+
super().__init__(head, **kwargs)
|
103 |
+
|
104 |
+
if path is not None:
|
105 |
+
self.load(path)
|
106 |
+
|
107 |
+
def forward(self, x):
|
108 |
+
return super().forward(x).squeeze(dim=1)
|
109 |
+
|
annotator/midas/midas/midas_net.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""MidashNet: Network for monocular depth estimation trained by mixing several datasets.
|
2 |
+
This file contains code that is adapted from
|
3 |
+
https://github.com/thomasjpfan/pytorch_refinenet/blob/master/pytorch_refinenet/refinenet/refinenet_4cascade.py
|
4 |
+
"""
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
|
8 |
+
from .base_model import BaseModel
|
9 |
+
from .blocks import FeatureFusionBlock, Interpolate, _make_encoder
|
10 |
+
|
11 |
+
|
12 |
+
class MidasNet(BaseModel):
|
13 |
+
"""Network for monocular depth estimation.
|
14 |
+
"""
|
15 |
+
|
16 |
+
def __init__(self, path=None, features=256, non_negative=True):
|
17 |
+
"""Init.
|
18 |
+
|
19 |
+
Args:
|
20 |
+
path (str, optional): Path to saved model. Defaults to None.
|
21 |
+
features (int, optional): Number of features. Defaults to 256.
|
22 |
+
backbone (str, optional): Backbone network for encoder. Defaults to resnet50
|
23 |
+
"""
|
24 |
+
print("Loading weights: ", path)
|
25 |
+
|
26 |
+
super(MidasNet, self).__init__()
|
27 |
+
|
28 |
+
use_pretrained = False if path is None else True
|
29 |
+
|
30 |
+
self.pretrained, self.scratch = _make_encoder(backbone="resnext101_wsl", features=features, use_pretrained=use_pretrained)
|
31 |
+
|
32 |
+
self.scratch.refinenet4 = FeatureFusionBlock(features)
|
33 |
+
self.scratch.refinenet3 = FeatureFusionBlock(features)
|
34 |
+
self.scratch.refinenet2 = FeatureFusionBlock(features)
|
35 |
+
self.scratch.refinenet1 = FeatureFusionBlock(features)
|
36 |
+
|
37 |
+
self.scratch.output_conv = nn.Sequential(
|
38 |
+
nn.Conv2d(features, 128, kernel_size=3, stride=1, padding=1),
|
39 |
+
Interpolate(scale_factor=2, mode="bilinear"),
|
40 |
+
nn.Conv2d(128, 32, kernel_size=3, stride=1, padding=1),
|
41 |
+
nn.ReLU(True),
|
42 |
+
nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
|
43 |
+
nn.ReLU(True) if non_negative else nn.Identity(),
|
44 |
+
)
|
45 |
+
|
46 |
+
if path:
|
47 |
+
self.load(path)
|
48 |
+
|
49 |
+
def forward(self, x):
|
50 |
+
"""Forward pass.
|
51 |
+
|
52 |
+
Args:
|
53 |
+
x (tensor): input data (image)
|
54 |
+
|
55 |
+
Returns:
|
56 |
+
tensor: depth
|
57 |
+
"""
|
58 |
+
|
59 |
+
layer_1 = self.pretrained.layer1(x)
|
60 |
+
layer_2 = self.pretrained.layer2(layer_1)
|
61 |
+
layer_3 = self.pretrained.layer3(layer_2)
|
62 |
+
layer_4 = self.pretrained.layer4(layer_3)
|
63 |
+
|
64 |
+
layer_1_rn = self.scratch.layer1_rn(layer_1)
|
65 |
+
layer_2_rn = self.scratch.layer2_rn(layer_2)
|
66 |
+
layer_3_rn = self.scratch.layer3_rn(layer_3)
|
67 |
+
layer_4_rn = self.scratch.layer4_rn(layer_4)
|
68 |
+
|
69 |
+
path_4 = self.scratch.refinenet4(layer_4_rn)
|
70 |
+
path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
|
71 |
+
path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
|
72 |
+
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
|
73 |
+
|
74 |
+
out = self.scratch.output_conv(path_1)
|
75 |
+
|
76 |
+
return torch.squeeze(out, dim=1)
|
annotator/midas/midas/midas_net_custom.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""MidashNet: Network for monocular depth estimation trained by mixing several datasets.
|
2 |
+
This file contains code that is adapted from
|
3 |
+
https://github.com/thomasjpfan/pytorch_refinenet/blob/master/pytorch_refinenet/refinenet/refinenet_4cascade.py
|
4 |
+
"""
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
|
8 |
+
from .base_model import BaseModel
|
9 |
+
from .blocks import FeatureFusionBlock, FeatureFusionBlock_custom, Interpolate, _make_encoder
|
10 |
+
|
11 |
+
|
12 |
+
class MidasNet_small(BaseModel):
|
13 |
+
"""Network for monocular depth estimation.
|
14 |
+
"""
|
15 |
+
|
16 |
+
def __init__(self, path=None, features=64, backbone="efficientnet_lite3", non_negative=True, exportable=True, channels_last=False, align_corners=True,
|
17 |
+
blocks={'expand': True}):
|
18 |
+
"""Init.
|
19 |
+
|
20 |
+
Args:
|
21 |
+
path (str, optional): Path to saved model. Defaults to None.
|
22 |
+
features (int, optional): Number of features. Defaults to 256.
|
23 |
+
backbone (str, optional): Backbone network for encoder. Defaults to resnet50
|
24 |
+
"""
|
25 |
+
print("Loading weights: ", path)
|
26 |
+
|
27 |
+
super(MidasNet_small, self).__init__()
|
28 |
+
|
29 |
+
use_pretrained = False if path else True
|
30 |
+
|
31 |
+
self.channels_last = channels_last
|
32 |
+
self.blocks = blocks
|
33 |
+
self.backbone = backbone
|
34 |
+
|
35 |
+
self.groups = 1
|
36 |
+
|
37 |
+
features1=features
|
38 |
+
features2=features
|
39 |
+
features3=features
|
40 |
+
features4=features
|
41 |
+
self.expand = False
|
42 |
+
if "expand" in self.blocks and self.blocks['expand'] == True:
|
43 |
+
self.expand = True
|
44 |
+
features1=features
|
45 |
+
features2=features*2
|
46 |
+
features3=features*4
|
47 |
+
features4=features*8
|
48 |
+
|
49 |
+
self.pretrained, self.scratch = _make_encoder(self.backbone, features, use_pretrained, groups=self.groups, expand=self.expand, exportable=exportable)
|
50 |
+
|
51 |
+
self.scratch.activation = nn.ReLU(False)
|
52 |
+
|
53 |
+
self.scratch.refinenet4 = FeatureFusionBlock_custom(features4, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
|
54 |
+
self.scratch.refinenet3 = FeatureFusionBlock_custom(features3, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
|
55 |
+
self.scratch.refinenet2 = FeatureFusionBlock_custom(features2, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
|
56 |
+
self.scratch.refinenet1 = FeatureFusionBlock_custom(features1, self.scratch.activation, deconv=False, bn=False, align_corners=align_corners)
|
57 |
+
|
58 |
+
|
59 |
+
self.scratch.output_conv = nn.Sequential(
|
60 |
+
nn.Conv2d(features, features//2, kernel_size=3, stride=1, padding=1, groups=self.groups),
|
61 |
+
Interpolate(scale_factor=2, mode="bilinear"),
|
62 |
+
nn.Conv2d(features//2, 32, kernel_size=3, stride=1, padding=1),
|
63 |
+
self.scratch.activation,
|
64 |
+
nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
|
65 |
+
nn.ReLU(True) if non_negative else nn.Identity(),
|
66 |
+
nn.Identity(),
|
67 |
+
)
|
68 |
+
|
69 |
+
if path:
|
70 |
+
self.load(path)
|
71 |
+
|
72 |
+
|
73 |
+
def forward(self, x):
|
74 |
+
"""Forward pass.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
x (tensor): input data (image)
|
78 |
+
|
79 |
+
Returns:
|
80 |
+
tensor: depth
|
81 |
+
"""
|
82 |
+
if self.channels_last==True:
|
83 |
+
print("self.channels_last = ", self.channels_last)
|
84 |
+
x.contiguous(memory_format=torch.channels_last)
|
85 |
+
|
86 |
+
|
87 |
+
layer_1 = self.pretrained.layer1(x)
|
88 |
+
layer_2 = self.pretrained.layer2(layer_1)
|
89 |
+
layer_3 = self.pretrained.layer3(layer_2)
|
90 |
+
layer_4 = self.pretrained.layer4(layer_3)
|
91 |
+
|
92 |
+
layer_1_rn = self.scratch.layer1_rn(layer_1)
|
93 |
+
layer_2_rn = self.scratch.layer2_rn(layer_2)
|
94 |
+
layer_3_rn = self.scratch.layer3_rn(layer_3)
|
95 |
+
layer_4_rn = self.scratch.layer4_rn(layer_4)
|
96 |
+
|
97 |
+
|
98 |
+
path_4 = self.scratch.refinenet4(layer_4_rn)
|
99 |
+
path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
|
100 |
+
path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
|
101 |
+
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
|
102 |
+
|
103 |
+
out = self.scratch.output_conv(path_1)
|
104 |
+
|
105 |
+
return torch.squeeze(out, dim=1)
|
106 |
+
|
107 |
+
|
108 |
+
|
109 |
+
def fuse_model(m):
|
110 |
+
prev_previous_type = nn.Identity()
|
111 |
+
prev_previous_name = ''
|
112 |
+
previous_type = nn.Identity()
|
113 |
+
previous_name = ''
|
114 |
+
for name, module in m.named_modules():
|
115 |
+
if prev_previous_type == nn.Conv2d and previous_type == nn.BatchNorm2d and type(module) == nn.ReLU:
|
116 |
+
# print("FUSED ", prev_previous_name, previous_name, name)
|
117 |
+
torch.quantization.fuse_modules(m, [prev_previous_name, previous_name, name], inplace=True)
|
118 |
+
elif prev_previous_type == nn.Conv2d and previous_type == nn.BatchNorm2d:
|
119 |
+
# print("FUSED ", prev_previous_name, previous_name)
|
120 |
+
torch.quantization.fuse_modules(m, [prev_previous_name, previous_name], inplace=True)
|
121 |
+
# elif previous_type == nn.Conv2d and type(module) == nn.ReLU:
|
122 |
+
# print("FUSED ", previous_name, name)
|
123 |
+
# torch.quantization.fuse_modules(m, [previous_name, name], inplace=True)
|
124 |
+
|
125 |
+
prev_previous_type = previous_type
|
126 |
+
prev_previous_name = previous_name
|
127 |
+
previous_type = type(module)
|
128 |
+
previous_name = name
|
annotator/midas/midas/transforms.py
ADDED
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import cv2
|
3 |
+
import math
|
4 |
+
|
5 |
+
|
6 |
+
def apply_min_size(sample, size, image_interpolation_method=cv2.INTER_AREA):
|
7 |
+
"""Rezise the sample to ensure the given size. Keeps aspect ratio.
|
8 |
+
|
9 |
+
Args:
|
10 |
+
sample (dict): sample
|
11 |
+
size (tuple): image size
|
12 |
+
|
13 |
+
Returns:
|
14 |
+
tuple: new size
|
15 |
+
"""
|
16 |
+
shape = list(sample["disparity"].shape)
|
17 |
+
|
18 |
+
if shape[0] >= size[0] and shape[1] >= size[1]:
|
19 |
+
return sample
|
20 |
+
|
21 |
+
scale = [0, 0]
|
22 |
+
scale[0] = size[0] / shape[0]
|
23 |
+
scale[1] = size[1] / shape[1]
|
24 |
+
|
25 |
+
scale = max(scale)
|
26 |
+
|
27 |
+
shape[0] = math.ceil(scale * shape[0])
|
28 |
+
shape[1] = math.ceil(scale * shape[1])
|
29 |
+
|
30 |
+
# resize
|
31 |
+
sample["image"] = cv2.resize(
|
32 |
+
sample["image"], tuple(shape[::-1]), interpolation=image_interpolation_method
|
33 |
+
)
|
34 |
+
|
35 |
+
sample["disparity"] = cv2.resize(
|
36 |
+
sample["disparity"], tuple(shape[::-1]), interpolation=cv2.INTER_NEAREST
|
37 |
+
)
|
38 |
+
sample["mask"] = cv2.resize(
|
39 |
+
sample["mask"].astype(np.float32),
|
40 |
+
tuple(shape[::-1]),
|
41 |
+
interpolation=cv2.INTER_NEAREST,
|
42 |
+
)
|
43 |
+
sample["mask"] = sample["mask"].astype(bool)
|
44 |
+
|
45 |
+
return tuple(shape)
|
46 |
+
|
47 |
+
|
48 |
+
class Resize(object):
|
49 |
+
"""Resize sample to given size (width, height).
|
50 |
+
"""
|
51 |
+
|
52 |
+
def __init__(
|
53 |
+
self,
|
54 |
+
width,
|
55 |
+
height,
|
56 |
+
resize_target=True,
|
57 |
+
keep_aspect_ratio=False,
|
58 |
+
ensure_multiple_of=1,
|
59 |
+
resize_method="lower_bound",
|
60 |
+
image_interpolation_method=cv2.INTER_AREA,
|
61 |
+
):
|
62 |
+
"""Init.
|
63 |
+
|
64 |
+
Args:
|
65 |
+
width (int): desired output width
|
66 |
+
height (int): desired output height
|
67 |
+
resize_target (bool, optional):
|
68 |
+
True: Resize the full sample (image, mask, target).
|
69 |
+
False: Resize image only.
|
70 |
+
Defaults to True.
|
71 |
+
keep_aspect_ratio (bool, optional):
|
72 |
+
True: Keep the aspect ratio of the input sample.
|
73 |
+
Output sample might not have the given width and height, and
|
74 |
+
resize behaviour depends on the parameter 'resize_method'.
|
75 |
+
Defaults to False.
|
76 |
+
ensure_multiple_of (int, optional):
|
77 |
+
Output width and height is constrained to be multiple of this parameter.
|
78 |
+
Defaults to 1.
|
79 |
+
resize_method (str, optional):
|
80 |
+
"lower_bound": Output will be at least as large as the given size.
|
81 |
+
"upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.)
|
82 |
+
"minimal": Scale as least as possible. (Output size might be smaller than given size.)
|
83 |
+
Defaults to "lower_bound".
|
84 |
+
"""
|
85 |
+
self.__width = width
|
86 |
+
self.__height = height
|
87 |
+
|
88 |
+
self.__resize_target = resize_target
|
89 |
+
self.__keep_aspect_ratio = keep_aspect_ratio
|
90 |
+
self.__multiple_of = ensure_multiple_of
|
91 |
+
self.__resize_method = resize_method
|
92 |
+
self.__image_interpolation_method = image_interpolation_method
|
93 |
+
|
94 |
+
def constrain_to_multiple_of(self, x, min_val=0, max_val=None):
|
95 |
+
y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int)
|
96 |
+
|
97 |
+
if max_val is not None and y > max_val:
|
98 |
+
y = (np.floor(x / self.__multiple_of) * self.__multiple_of).astype(int)
|
99 |
+
|
100 |
+
if y < min_val:
|
101 |
+
y = (np.ceil(x / self.__multiple_of) * self.__multiple_of).astype(int)
|
102 |
+
|
103 |
+
return y
|
104 |
+
|
105 |
+
def get_size(self, width, height):
|
106 |
+
# determine new height and width
|
107 |
+
scale_height = self.__height / height
|
108 |
+
scale_width = self.__width / width
|
109 |
+
|
110 |
+
if self.__keep_aspect_ratio:
|
111 |
+
if self.__resize_method == "lower_bound":
|
112 |
+
# scale such that output size is lower bound
|
113 |
+
if scale_width > scale_height:
|
114 |
+
# fit width
|
115 |
+
scale_height = scale_width
|
116 |
+
else:
|
117 |
+
# fit height
|
118 |
+
scale_width = scale_height
|
119 |
+
elif self.__resize_method == "upper_bound":
|
120 |
+
# scale such that output size is upper bound
|
121 |
+
if scale_width < scale_height:
|
122 |
+
# fit width
|
123 |
+
scale_height = scale_width
|
124 |
+
else:
|
125 |
+
# fit height
|
126 |
+
scale_width = scale_height
|
127 |
+
elif self.__resize_method == "minimal":
|
128 |
+
# scale as least as possbile
|
129 |
+
if abs(1 - scale_width) < abs(1 - scale_height):
|
130 |
+
# fit width
|
131 |
+
scale_height = scale_width
|
132 |
+
else:
|
133 |
+
# fit height
|
134 |
+
scale_width = scale_height
|
135 |
+
else:
|
136 |
+
raise ValueError(
|
137 |
+
f"resize_method {self.__resize_method} not implemented"
|
138 |
+
)
|
139 |
+
|
140 |
+
if self.__resize_method == "lower_bound":
|
141 |
+
new_height = self.constrain_to_multiple_of(
|
142 |
+
scale_height * height, min_val=self.__height
|
143 |
+
)
|
144 |
+
new_width = self.constrain_to_multiple_of(
|
145 |
+
scale_width * width, min_val=self.__width
|
146 |
+
)
|
147 |
+
elif self.__resize_method == "upper_bound":
|
148 |
+
new_height = self.constrain_to_multiple_of(
|
149 |
+
scale_height * height, max_val=self.__height
|
150 |
+
)
|
151 |
+
new_width = self.constrain_to_multiple_of(
|
152 |
+
scale_width * width, max_val=self.__width
|
153 |
+
)
|
154 |
+
elif self.__resize_method == "minimal":
|
155 |
+
new_height = self.constrain_to_multiple_of(scale_height * height)
|
156 |
+
new_width = self.constrain_to_multiple_of(scale_width * width)
|
157 |
+
else:
|
158 |
+
raise ValueError(f"resize_method {self.__resize_method} not implemented")
|
159 |
+
|
160 |
+
return (new_width, new_height)
|
161 |
+
|
162 |
+
def __call__(self, sample):
|
163 |
+
width, height = self.get_size(
|
164 |
+
sample["image"].shape[1], sample["image"].shape[0]
|
165 |
+
)
|
166 |
+
|
167 |
+
# resize sample
|
168 |
+
sample["image"] = cv2.resize(
|
169 |
+
sample["image"],
|
170 |
+
(width, height),
|
171 |
+
interpolation=self.__image_interpolation_method,
|
172 |
+
)
|
173 |
+
|
174 |
+
if self.__resize_target:
|
175 |
+
if "disparity" in sample:
|
176 |
+
sample["disparity"] = cv2.resize(
|
177 |
+
sample["disparity"],
|
178 |
+
(width, height),
|
179 |
+
interpolation=cv2.INTER_NEAREST,
|
180 |
+
)
|
181 |
+
|
182 |
+
if "depth" in sample:
|
183 |
+
sample["depth"] = cv2.resize(
|
184 |
+
sample["depth"], (width, height), interpolation=cv2.INTER_NEAREST
|
185 |
+
)
|
186 |
+
|
187 |
+
sample["mask"] = cv2.resize(
|
188 |
+
sample["mask"].astype(np.float32),
|
189 |
+
(width, height),
|
190 |
+
interpolation=cv2.INTER_NEAREST,
|
191 |
+
)
|
192 |
+
sample["mask"] = sample["mask"].astype(bool)
|
193 |
+
|
194 |
+
return sample
|
195 |
+
|
196 |
+
|
197 |
+
class NormalizeImage(object):
|
198 |
+
"""Normlize image by given mean and std.
|
199 |
+
"""
|
200 |
+
|
201 |
+
def __init__(self, mean, std):
|
202 |
+
self.__mean = mean
|
203 |
+
self.__std = std
|
204 |
+
|
205 |
+
def __call__(self, sample):
|
206 |
+
sample["image"] = (sample["image"] - self.__mean) / self.__std
|
207 |
+
|
208 |
+
return sample
|
209 |
+
|
210 |
+
|
211 |
+
class PrepareForNet(object):
|
212 |
+
"""Prepare sample for usage as network input.
|
213 |
+
"""
|
214 |
+
|
215 |
+
def __init__(self):
|
216 |
+
pass
|
217 |
+
|
218 |
+
def __call__(self, sample):
|
219 |
+
image = np.transpose(sample["image"], (2, 0, 1))
|
220 |
+
sample["image"] = np.ascontiguousarray(image).astype(np.float32)
|
221 |
+
|
222 |
+
if "mask" in sample:
|
223 |
+
sample["mask"] = sample["mask"].astype(np.float32)
|
224 |
+
sample["mask"] = np.ascontiguousarray(sample["mask"])
|
225 |
+
|
226 |
+
if "disparity" in sample:
|
227 |
+
disparity = sample["disparity"].astype(np.float32)
|
228 |
+
sample["disparity"] = np.ascontiguousarray(disparity)
|
229 |
+
|
230 |
+
if "depth" in sample:
|
231 |
+
depth = sample["depth"].astype(np.float32)
|
232 |
+
sample["depth"] = np.ascontiguousarray(depth)
|
233 |
+
|
234 |
+
return sample
|
annotator/midas/midas/vit.py
ADDED
@@ -0,0 +1,491 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import timm
|
4 |
+
import types
|
5 |
+
import math
|
6 |
+
import torch.nn.functional as F
|
7 |
+
|
8 |
+
|
9 |
+
class Slice(nn.Module):
|
10 |
+
def __init__(self, start_index=1):
|
11 |
+
super(Slice, self).__init__()
|
12 |
+
self.start_index = start_index
|
13 |
+
|
14 |
+
def forward(self, x):
|
15 |
+
return x[:, self.start_index :]
|
16 |
+
|
17 |
+
|
18 |
+
class AddReadout(nn.Module):
|
19 |
+
def __init__(self, start_index=1):
|
20 |
+
super(AddReadout, self).__init__()
|
21 |
+
self.start_index = start_index
|
22 |
+
|
23 |
+
def forward(self, x):
|
24 |
+
if self.start_index == 2:
|
25 |
+
readout = (x[:, 0] + x[:, 1]) / 2
|
26 |
+
else:
|
27 |
+
readout = x[:, 0]
|
28 |
+
return x[:, self.start_index :] + readout.unsqueeze(1)
|
29 |
+
|
30 |
+
|
31 |
+
class ProjectReadout(nn.Module):
|
32 |
+
def __init__(self, in_features, start_index=1):
|
33 |
+
super(ProjectReadout, self).__init__()
|
34 |
+
self.start_index = start_index
|
35 |
+
|
36 |
+
self.project = nn.Sequential(nn.Linear(2 * in_features, in_features), nn.GELU())
|
37 |
+
|
38 |
+
def forward(self, x):
|
39 |
+
readout = x[:, 0].unsqueeze(1).expand_as(x[:, self.start_index :])
|
40 |
+
features = torch.cat((x[:, self.start_index :], readout), -1)
|
41 |
+
|
42 |
+
return self.project(features)
|
43 |
+
|
44 |
+
|
45 |
+
class Transpose(nn.Module):
|
46 |
+
def __init__(self, dim0, dim1):
|
47 |
+
super(Transpose, self).__init__()
|
48 |
+
self.dim0 = dim0
|
49 |
+
self.dim1 = dim1
|
50 |
+
|
51 |
+
def forward(self, x):
|
52 |
+
x = x.transpose(self.dim0, self.dim1)
|
53 |
+
return x
|
54 |
+
|
55 |
+
|
56 |
+
def forward_vit(pretrained, x):
|
57 |
+
b, c, h, w = x.shape
|
58 |
+
|
59 |
+
glob = pretrained.model.forward_flex(x)
|
60 |
+
|
61 |
+
layer_1 = pretrained.activations["1"]
|
62 |
+
layer_2 = pretrained.activations["2"]
|
63 |
+
layer_3 = pretrained.activations["3"]
|
64 |
+
layer_4 = pretrained.activations["4"]
|
65 |
+
|
66 |
+
layer_1 = pretrained.act_postprocess1[0:2](layer_1)
|
67 |
+
layer_2 = pretrained.act_postprocess2[0:2](layer_2)
|
68 |
+
layer_3 = pretrained.act_postprocess3[0:2](layer_3)
|
69 |
+
layer_4 = pretrained.act_postprocess4[0:2](layer_4)
|
70 |
+
|
71 |
+
unflatten = nn.Sequential(
|
72 |
+
nn.Unflatten(
|
73 |
+
2,
|
74 |
+
torch.Size(
|
75 |
+
[
|
76 |
+
h // pretrained.model.patch_size[1],
|
77 |
+
w // pretrained.model.patch_size[0],
|
78 |
+
]
|
79 |
+
),
|
80 |
+
)
|
81 |
+
)
|
82 |
+
|
83 |
+
if layer_1.ndim == 3:
|
84 |
+
layer_1 = unflatten(layer_1)
|
85 |
+
if layer_2.ndim == 3:
|
86 |
+
layer_2 = unflatten(layer_2)
|
87 |
+
if layer_3.ndim == 3:
|
88 |
+
layer_3 = unflatten(layer_3)
|
89 |
+
if layer_4.ndim == 3:
|
90 |
+
layer_4 = unflatten(layer_4)
|
91 |
+
|
92 |
+
layer_1 = pretrained.act_postprocess1[3 : len(pretrained.act_postprocess1)](layer_1)
|
93 |
+
layer_2 = pretrained.act_postprocess2[3 : len(pretrained.act_postprocess2)](layer_2)
|
94 |
+
layer_3 = pretrained.act_postprocess3[3 : len(pretrained.act_postprocess3)](layer_3)
|
95 |
+
layer_4 = pretrained.act_postprocess4[3 : len(pretrained.act_postprocess4)](layer_4)
|
96 |
+
|
97 |
+
return layer_1, layer_2, layer_3, layer_4
|
98 |
+
|
99 |
+
|
100 |
+
def _resize_pos_embed(self, posemb, gs_h, gs_w):
|
101 |
+
posemb_tok, posemb_grid = (
|
102 |
+
posemb[:, : self.start_index],
|
103 |
+
posemb[0, self.start_index :],
|
104 |
+
)
|
105 |
+
|
106 |
+
gs_old = int(math.sqrt(len(posemb_grid)))
|
107 |
+
|
108 |
+
posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2)
|
109 |
+
posemb_grid = F.interpolate(posemb_grid, size=(gs_h, gs_w), mode="bilinear")
|
110 |
+
posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_h * gs_w, -1)
|
111 |
+
|
112 |
+
posemb = torch.cat([posemb_tok, posemb_grid], dim=1)
|
113 |
+
|
114 |
+
return posemb
|
115 |
+
|
116 |
+
|
117 |
+
def forward_flex(self, x):
|
118 |
+
b, c, h, w = x.shape
|
119 |
+
|
120 |
+
pos_embed = self._resize_pos_embed(
|
121 |
+
self.pos_embed, h // self.patch_size[1], w // self.patch_size[0]
|
122 |
+
)
|
123 |
+
|
124 |
+
B = x.shape[0]
|
125 |
+
|
126 |
+
if hasattr(self.patch_embed, "backbone"):
|
127 |
+
x = self.patch_embed.backbone(x)
|
128 |
+
if isinstance(x, (list, tuple)):
|
129 |
+
x = x[-1] # last feature if backbone outputs list/tuple of features
|
130 |
+
|
131 |
+
x = self.patch_embed.proj(x).flatten(2).transpose(1, 2)
|
132 |
+
|
133 |
+
if getattr(self, "dist_token", None) is not None:
|
134 |
+
cls_tokens = self.cls_token.expand(
|
135 |
+
B, -1, -1
|
136 |
+
) # stole cls_tokens impl from Phil Wang, thanks
|
137 |
+
dist_token = self.dist_token.expand(B, -1, -1)
|
138 |
+
x = torch.cat((cls_tokens, dist_token, x), dim=1)
|
139 |
+
else:
|
140 |
+
cls_tokens = self.cls_token.expand(
|
141 |
+
B, -1, -1
|
142 |
+
) # stole cls_tokens impl from Phil Wang, thanks
|
143 |
+
x = torch.cat((cls_tokens, x), dim=1)
|
144 |
+
|
145 |
+
x = x + pos_embed
|
146 |
+
x = self.pos_drop(x)
|
147 |
+
|
148 |
+
for blk in self.blocks:
|
149 |
+
x = blk(x)
|
150 |
+
|
151 |
+
x = self.norm(x)
|
152 |
+
|
153 |
+
return x
|
154 |
+
|
155 |
+
|
156 |
+
activations = {}
|
157 |
+
|
158 |
+
|
159 |
+
def get_activation(name):
|
160 |
+
def hook(model, input, output):
|
161 |
+
activations[name] = output
|
162 |
+
|
163 |
+
return hook
|
164 |
+
|
165 |
+
|
166 |
+
def get_readout_oper(vit_features, features, use_readout, start_index=1):
|
167 |
+
if use_readout == "ignore":
|
168 |
+
readout_oper = [Slice(start_index)] * len(features)
|
169 |
+
elif use_readout == "add":
|
170 |
+
readout_oper = [AddReadout(start_index)] * len(features)
|
171 |
+
elif use_readout == "project":
|
172 |
+
readout_oper = [
|
173 |
+
ProjectReadout(vit_features, start_index) for out_feat in features
|
174 |
+
]
|
175 |
+
else:
|
176 |
+
assert (
|
177 |
+
False
|
178 |
+
), "wrong operation for readout token, use_readout can be 'ignore', 'add', or 'project'"
|
179 |
+
|
180 |
+
return readout_oper
|
181 |
+
|
182 |
+
|
183 |
+
def _make_vit_b16_backbone(
|
184 |
+
model,
|
185 |
+
features=[96, 192, 384, 768],
|
186 |
+
size=[384, 384],
|
187 |
+
hooks=[2, 5, 8, 11],
|
188 |
+
vit_features=768,
|
189 |
+
use_readout="ignore",
|
190 |
+
start_index=1,
|
191 |
+
):
|
192 |
+
pretrained = nn.Module()
|
193 |
+
|
194 |
+
pretrained.model = model
|
195 |
+
pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1"))
|
196 |
+
pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2"))
|
197 |
+
pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3"))
|
198 |
+
pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4"))
|
199 |
+
|
200 |
+
pretrained.activations = activations
|
201 |
+
|
202 |
+
readout_oper = get_readout_oper(vit_features, features, use_readout, start_index)
|
203 |
+
|
204 |
+
# 32, 48, 136, 384
|
205 |
+
pretrained.act_postprocess1 = nn.Sequential(
|
206 |
+
readout_oper[0],
|
207 |
+
Transpose(1, 2),
|
208 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
209 |
+
nn.Conv2d(
|
210 |
+
in_channels=vit_features,
|
211 |
+
out_channels=features[0],
|
212 |
+
kernel_size=1,
|
213 |
+
stride=1,
|
214 |
+
padding=0,
|
215 |
+
),
|
216 |
+
nn.ConvTranspose2d(
|
217 |
+
in_channels=features[0],
|
218 |
+
out_channels=features[0],
|
219 |
+
kernel_size=4,
|
220 |
+
stride=4,
|
221 |
+
padding=0,
|
222 |
+
bias=True,
|
223 |
+
dilation=1,
|
224 |
+
groups=1,
|
225 |
+
),
|
226 |
+
)
|
227 |
+
|
228 |
+
pretrained.act_postprocess2 = nn.Sequential(
|
229 |
+
readout_oper[1],
|
230 |
+
Transpose(1, 2),
|
231 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
232 |
+
nn.Conv2d(
|
233 |
+
in_channels=vit_features,
|
234 |
+
out_channels=features[1],
|
235 |
+
kernel_size=1,
|
236 |
+
stride=1,
|
237 |
+
padding=0,
|
238 |
+
),
|
239 |
+
nn.ConvTranspose2d(
|
240 |
+
in_channels=features[1],
|
241 |
+
out_channels=features[1],
|
242 |
+
kernel_size=2,
|
243 |
+
stride=2,
|
244 |
+
padding=0,
|
245 |
+
bias=True,
|
246 |
+
dilation=1,
|
247 |
+
groups=1,
|
248 |
+
),
|
249 |
+
)
|
250 |
+
|
251 |
+
pretrained.act_postprocess3 = nn.Sequential(
|
252 |
+
readout_oper[2],
|
253 |
+
Transpose(1, 2),
|
254 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
255 |
+
nn.Conv2d(
|
256 |
+
in_channels=vit_features,
|
257 |
+
out_channels=features[2],
|
258 |
+
kernel_size=1,
|
259 |
+
stride=1,
|
260 |
+
padding=0,
|
261 |
+
),
|
262 |
+
)
|
263 |
+
|
264 |
+
pretrained.act_postprocess4 = nn.Sequential(
|
265 |
+
readout_oper[3],
|
266 |
+
Transpose(1, 2),
|
267 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
268 |
+
nn.Conv2d(
|
269 |
+
in_channels=vit_features,
|
270 |
+
out_channels=features[3],
|
271 |
+
kernel_size=1,
|
272 |
+
stride=1,
|
273 |
+
padding=0,
|
274 |
+
),
|
275 |
+
nn.Conv2d(
|
276 |
+
in_channels=features[3],
|
277 |
+
out_channels=features[3],
|
278 |
+
kernel_size=3,
|
279 |
+
stride=2,
|
280 |
+
padding=1,
|
281 |
+
),
|
282 |
+
)
|
283 |
+
|
284 |
+
pretrained.model.start_index = start_index
|
285 |
+
pretrained.model.patch_size = [16, 16]
|
286 |
+
|
287 |
+
# We inject this function into the VisionTransformer instances so that
|
288 |
+
# we can use it with interpolated position embeddings without modifying the library source.
|
289 |
+
pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model)
|
290 |
+
pretrained.model._resize_pos_embed = types.MethodType(
|
291 |
+
_resize_pos_embed, pretrained.model
|
292 |
+
)
|
293 |
+
|
294 |
+
return pretrained
|
295 |
+
|
296 |
+
|
297 |
+
def _make_pretrained_vitl16_384(pretrained, use_readout="ignore", hooks=None):
|
298 |
+
model = timm.create_model("vit_large_patch16_384", pretrained=pretrained)
|
299 |
+
|
300 |
+
hooks = [5, 11, 17, 23] if hooks == None else hooks
|
301 |
+
return _make_vit_b16_backbone(
|
302 |
+
model,
|
303 |
+
features=[256, 512, 1024, 1024],
|
304 |
+
hooks=hooks,
|
305 |
+
vit_features=1024,
|
306 |
+
use_readout=use_readout,
|
307 |
+
)
|
308 |
+
|
309 |
+
|
310 |
+
def _make_pretrained_vitb16_384(pretrained, use_readout="ignore", hooks=None):
|
311 |
+
model = timm.create_model("vit_base_patch16_384", pretrained=pretrained)
|
312 |
+
|
313 |
+
hooks = [2, 5, 8, 11] if hooks == None else hooks
|
314 |
+
return _make_vit_b16_backbone(
|
315 |
+
model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout
|
316 |
+
)
|
317 |
+
|
318 |
+
|
319 |
+
def _make_pretrained_deitb16_384(pretrained, use_readout="ignore", hooks=None):
|
320 |
+
model = timm.create_model("vit_deit_base_patch16_384", pretrained=pretrained)
|
321 |
+
|
322 |
+
hooks = [2, 5, 8, 11] if hooks == None else hooks
|
323 |
+
return _make_vit_b16_backbone(
|
324 |
+
model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout
|
325 |
+
)
|
326 |
+
|
327 |
+
|
328 |
+
def _make_pretrained_deitb16_distil_384(pretrained, use_readout="ignore", hooks=None):
|
329 |
+
model = timm.create_model(
|
330 |
+
"vit_deit_base_distilled_patch16_384", pretrained=pretrained
|
331 |
+
)
|
332 |
+
|
333 |
+
hooks = [2, 5, 8, 11] if hooks == None else hooks
|
334 |
+
return _make_vit_b16_backbone(
|
335 |
+
model,
|
336 |
+
features=[96, 192, 384, 768],
|
337 |
+
hooks=hooks,
|
338 |
+
use_readout=use_readout,
|
339 |
+
start_index=2,
|
340 |
+
)
|
341 |
+
|
342 |
+
|
343 |
+
def _make_vit_b_rn50_backbone(
|
344 |
+
model,
|
345 |
+
features=[256, 512, 768, 768],
|
346 |
+
size=[384, 384],
|
347 |
+
hooks=[0, 1, 8, 11],
|
348 |
+
vit_features=768,
|
349 |
+
use_vit_only=False,
|
350 |
+
use_readout="ignore",
|
351 |
+
start_index=1,
|
352 |
+
):
|
353 |
+
pretrained = nn.Module()
|
354 |
+
|
355 |
+
pretrained.model = model
|
356 |
+
|
357 |
+
if use_vit_only == True:
|
358 |
+
pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1"))
|
359 |
+
pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2"))
|
360 |
+
else:
|
361 |
+
pretrained.model.patch_embed.backbone.stages[0].register_forward_hook(
|
362 |
+
get_activation("1")
|
363 |
+
)
|
364 |
+
pretrained.model.patch_embed.backbone.stages[1].register_forward_hook(
|
365 |
+
get_activation("2")
|
366 |
+
)
|
367 |
+
|
368 |
+
pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3"))
|
369 |
+
pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4"))
|
370 |
+
|
371 |
+
pretrained.activations = activations
|
372 |
+
|
373 |
+
readout_oper = get_readout_oper(vit_features, features, use_readout, start_index)
|
374 |
+
|
375 |
+
if use_vit_only == True:
|
376 |
+
pretrained.act_postprocess1 = nn.Sequential(
|
377 |
+
readout_oper[0],
|
378 |
+
Transpose(1, 2),
|
379 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
380 |
+
nn.Conv2d(
|
381 |
+
in_channels=vit_features,
|
382 |
+
out_channels=features[0],
|
383 |
+
kernel_size=1,
|
384 |
+
stride=1,
|
385 |
+
padding=0,
|
386 |
+
),
|
387 |
+
nn.ConvTranspose2d(
|
388 |
+
in_channels=features[0],
|
389 |
+
out_channels=features[0],
|
390 |
+
kernel_size=4,
|
391 |
+
stride=4,
|
392 |
+
padding=0,
|
393 |
+
bias=True,
|
394 |
+
dilation=1,
|
395 |
+
groups=1,
|
396 |
+
),
|
397 |
+
)
|
398 |
+
|
399 |
+
pretrained.act_postprocess2 = nn.Sequential(
|
400 |
+
readout_oper[1],
|
401 |
+
Transpose(1, 2),
|
402 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
403 |
+
nn.Conv2d(
|
404 |
+
in_channels=vit_features,
|
405 |
+
out_channels=features[1],
|
406 |
+
kernel_size=1,
|
407 |
+
stride=1,
|
408 |
+
padding=0,
|
409 |
+
),
|
410 |
+
nn.ConvTranspose2d(
|
411 |
+
in_channels=features[1],
|
412 |
+
out_channels=features[1],
|
413 |
+
kernel_size=2,
|
414 |
+
stride=2,
|
415 |
+
padding=0,
|
416 |
+
bias=True,
|
417 |
+
dilation=1,
|
418 |
+
groups=1,
|
419 |
+
),
|
420 |
+
)
|
421 |
+
else:
|
422 |
+
pretrained.act_postprocess1 = nn.Sequential(
|
423 |
+
nn.Identity(), nn.Identity(), nn.Identity()
|
424 |
+
)
|
425 |
+
pretrained.act_postprocess2 = nn.Sequential(
|
426 |
+
nn.Identity(), nn.Identity(), nn.Identity()
|
427 |
+
)
|
428 |
+
|
429 |
+
pretrained.act_postprocess3 = nn.Sequential(
|
430 |
+
readout_oper[2],
|
431 |
+
Transpose(1, 2),
|
432 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
433 |
+
nn.Conv2d(
|
434 |
+
in_channels=vit_features,
|
435 |
+
out_channels=features[2],
|
436 |
+
kernel_size=1,
|
437 |
+
stride=1,
|
438 |
+
padding=0,
|
439 |
+
),
|
440 |
+
)
|
441 |
+
|
442 |
+
pretrained.act_postprocess4 = nn.Sequential(
|
443 |
+
readout_oper[3],
|
444 |
+
Transpose(1, 2),
|
445 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
446 |
+
nn.Conv2d(
|
447 |
+
in_channels=vit_features,
|
448 |
+
out_channels=features[3],
|
449 |
+
kernel_size=1,
|
450 |
+
stride=1,
|
451 |
+
padding=0,
|
452 |
+
),
|
453 |
+
nn.Conv2d(
|
454 |
+
in_channels=features[3],
|
455 |
+
out_channels=features[3],
|
456 |
+
kernel_size=3,
|
457 |
+
stride=2,
|
458 |
+
padding=1,
|
459 |
+
),
|
460 |
+
)
|
461 |
+
|
462 |
+
pretrained.model.start_index = start_index
|
463 |
+
pretrained.model.patch_size = [16, 16]
|
464 |
+
|
465 |
+
# We inject this function into the VisionTransformer instances so that
|
466 |
+
# we can use it with interpolated position embeddings without modifying the library source.
|
467 |
+
pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model)
|
468 |
+
|
469 |
+
# We inject this function into the VisionTransformer instances so that
|
470 |
+
# we can use it with interpolated position embeddings without modifying the library source.
|
471 |
+
pretrained.model._resize_pos_embed = types.MethodType(
|
472 |
+
_resize_pos_embed, pretrained.model
|
473 |
+
)
|
474 |
+
|
475 |
+
return pretrained
|
476 |
+
|
477 |
+
|
478 |
+
def _make_pretrained_vitb_rn50_384(
|
479 |
+
pretrained, use_readout="ignore", hooks=None, use_vit_only=False
|
480 |
+
):
|
481 |
+
model = timm.create_model("vit_base_resnet50_384", pretrained=pretrained)
|
482 |
+
|
483 |
+
hooks = [0, 1, 8, 11] if hooks == None else hooks
|
484 |
+
return _make_vit_b_rn50_backbone(
|
485 |
+
model,
|
486 |
+
features=[256, 512, 768, 768],
|
487 |
+
size=[384, 384],
|
488 |
+
hooks=hooks,
|
489 |
+
use_vit_only=use_vit_only,
|
490 |
+
use_readout=use_readout,
|
491 |
+
)
|
annotator/midas/utils.py
ADDED
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Utils for monoDepth."""
|
2 |
+
import sys
|
3 |
+
import re
|
4 |
+
import numpy as np
|
5 |
+
import cv2
|
6 |
+
import torch
|
7 |
+
|
8 |
+
|
9 |
+
def read_pfm(path):
|
10 |
+
"""Read pfm file.
|
11 |
+
|
12 |
+
Args:
|
13 |
+
path (str): path to file
|
14 |
+
|
15 |
+
Returns:
|
16 |
+
tuple: (data, scale)
|
17 |
+
"""
|
18 |
+
with open(path, "rb") as file:
|
19 |
+
|
20 |
+
color = None
|
21 |
+
width = None
|
22 |
+
height = None
|
23 |
+
scale = None
|
24 |
+
endian = None
|
25 |
+
|
26 |
+
header = file.readline().rstrip()
|
27 |
+
if header.decode("ascii") == "PF":
|
28 |
+
color = True
|
29 |
+
elif header.decode("ascii") == "Pf":
|
30 |
+
color = False
|
31 |
+
else:
|
32 |
+
raise Exception("Not a PFM file: " + path)
|
33 |
+
|
34 |
+
dim_match = re.match(r"^(\d+)\s(\d+)\s$", file.readline().decode("ascii"))
|
35 |
+
if dim_match:
|
36 |
+
width, height = list(map(int, dim_match.groups()))
|
37 |
+
else:
|
38 |
+
raise Exception("Malformed PFM header.")
|
39 |
+
|
40 |
+
scale = float(file.readline().decode("ascii").rstrip())
|
41 |
+
if scale < 0:
|
42 |
+
# little-endian
|
43 |
+
endian = "<"
|
44 |
+
scale = -scale
|
45 |
+
else:
|
46 |
+
# big-endian
|
47 |
+
endian = ">"
|
48 |
+
|
49 |
+
data = np.fromfile(file, endian + "f")
|
50 |
+
shape = (height, width, 3) if color else (height, width)
|
51 |
+
|
52 |
+
data = np.reshape(data, shape)
|
53 |
+
data = np.flipud(data)
|
54 |
+
|
55 |
+
return data, scale
|
56 |
+
|
57 |
+
|
58 |
+
def write_pfm(path, image, scale=1):
|
59 |
+
"""Write pfm file.
|
60 |
+
|
61 |
+
Args:
|
62 |
+
path (str): pathto file
|
63 |
+
image (array): data
|
64 |
+
scale (int, optional): Scale. Defaults to 1.
|
65 |
+
"""
|
66 |
+
|
67 |
+
with open(path, "wb") as file:
|
68 |
+
color = None
|
69 |
+
|
70 |
+
if image.dtype.name != "float32":
|
71 |
+
raise Exception("Image dtype must be float32.")
|
72 |
+
|
73 |
+
image = np.flipud(image)
|
74 |
+
|
75 |
+
if len(image.shape) == 3 and image.shape[2] == 3: # color image
|
76 |
+
color = True
|
77 |
+
elif (
|
78 |
+
len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1
|
79 |
+
): # greyscale
|
80 |
+
color = False
|
81 |
+
else:
|
82 |
+
raise Exception("Image must have H x W x 3, H x W x 1 or H x W dimensions.")
|
83 |
+
|
84 |
+
file.write("PF\n" if color else "Pf\n".encode())
|
85 |
+
file.write("%d %d\n".encode() % (image.shape[1], image.shape[0]))
|
86 |
+
|
87 |
+
endian = image.dtype.byteorder
|
88 |
+
|
89 |
+
if endian == "<" or endian == "=" and sys.byteorder == "little":
|
90 |
+
scale = -scale
|
91 |
+
|
92 |
+
file.write("%f\n".encode() % scale)
|
93 |
+
|
94 |
+
image.tofile(file)
|
95 |
+
|
96 |
+
|
97 |
+
def read_image(path):
|
98 |
+
"""Read image and output RGB image (0-1).
|
99 |
+
|
100 |
+
Args:
|
101 |
+
path (str): path to file
|
102 |
+
|
103 |
+
Returns:
|
104 |
+
array: RGB image (0-1)
|
105 |
+
"""
|
106 |
+
img = cv2.imread(path)
|
107 |
+
|
108 |
+
if img.ndim == 2:
|
109 |
+
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
110 |
+
|
111 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) / 255.0
|
112 |
+
|
113 |
+
return img
|
114 |
+
|
115 |
+
|
116 |
+
def resize_image(img):
|
117 |
+
"""Resize image and make it fit for network.
|
118 |
+
|
119 |
+
Args:
|
120 |
+
img (array): image
|
121 |
+
|
122 |
+
Returns:
|
123 |
+
tensor: data ready for network
|
124 |
+
"""
|
125 |
+
height_orig = img.shape[0]
|
126 |
+
width_orig = img.shape[1]
|
127 |
+
|
128 |
+
if width_orig > height_orig:
|
129 |
+
scale = width_orig / 384
|
130 |
+
else:
|
131 |
+
scale = height_orig / 384
|
132 |
+
|
133 |
+
height = (np.ceil(height_orig / scale / 32) * 32).astype(int)
|
134 |
+
width = (np.ceil(width_orig / scale / 32) * 32).astype(int)
|
135 |
+
|
136 |
+
img_resized = cv2.resize(img, (width, height), interpolation=cv2.INTER_AREA)
|
137 |
+
|
138 |
+
img_resized = (
|
139 |
+
torch.from_numpy(np.transpose(img_resized, (2, 0, 1))).contiguous().float()
|
140 |
+
)
|
141 |
+
img_resized = img_resized.unsqueeze(0)
|
142 |
+
|
143 |
+
return img_resized
|
144 |
+
|
145 |
+
|
146 |
+
def resize_depth(depth, width, height):
|
147 |
+
"""Resize depth map and bring to CPU (numpy).
|
148 |
+
|
149 |
+
Args:
|
150 |
+
depth (tensor): depth
|
151 |
+
width (int): image width
|
152 |
+
height (int): image height
|
153 |
+
|
154 |
+
Returns:
|
155 |
+
array: processed depth
|
156 |
+
"""
|
157 |
+
depth = torch.squeeze(depth[0, :, :, :]).to("cpu")
|
158 |
+
|
159 |
+
depth_resized = cv2.resize(
|
160 |
+
depth.numpy(), (width, height), interpolation=cv2.INTER_CUBIC
|
161 |
+
)
|
162 |
+
|
163 |
+
return depth_resized
|
164 |
+
|
165 |
+
def write_depth(path, depth, bits=1):
|
166 |
+
"""Write depth map to pfm and png file.
|
167 |
+
|
168 |
+
Args:
|
169 |
+
path (str): filepath without extension
|
170 |
+
depth (array): depth
|
171 |
+
"""
|
172 |
+
write_pfm(path + ".pfm", depth.astype(np.float32))
|
173 |
+
|
174 |
+
depth_min = depth.min()
|
175 |
+
depth_max = depth.max()
|
176 |
+
|
177 |
+
max_val = (2**(8*bits))-1
|
178 |
+
|
179 |
+
if depth_max - depth_min > np.finfo("float").eps:
|
180 |
+
out = max_val * (depth - depth_min) / (depth_max - depth_min)
|
181 |
+
else:
|
182 |
+
out = np.zeros(depth.shape, dtype=depth.type)
|
183 |
+
|
184 |
+
if bits == 1:
|
185 |
+
cv2.imwrite(path + ".png", out.astype("uint8"))
|
186 |
+
elif bits == 2:
|
187 |
+
cv2.imwrite(path + ".png", out.astype("uint16"))
|
188 |
+
|
189 |
+
return
|
annotator/util.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import cv2
|
5 |
+
import os
|
6 |
+
import PIL
|
7 |
+
|
8 |
+
annotator_ckpts_path = os.path.join(os.path.dirname(__file__), 'ckpts')
|
9 |
+
|
10 |
+
def HWC3(x):
|
11 |
+
assert x.dtype == np.uint8
|
12 |
+
if x.ndim == 2:
|
13 |
+
x = x[:, :, None]
|
14 |
+
assert x.ndim == 3
|
15 |
+
H, W, C = x.shape
|
16 |
+
assert C == 1 or C == 3 or C == 4
|
17 |
+
if C == 3:
|
18 |
+
return x
|
19 |
+
if C == 1:
|
20 |
+
return np.concatenate([x, x, x], axis=2)
|
21 |
+
if C == 4:
|
22 |
+
color = x[:, :, 0:3].astype(np.float32)
|
23 |
+
alpha = x[:, :, 3:4].astype(np.float32) / 255.0
|
24 |
+
y = color * alpha + 255.0 * (1.0 - alpha)
|
25 |
+
y = y.clip(0, 255).astype(np.uint8)
|
26 |
+
return y
|
27 |
+
|
28 |
+
|
29 |
+
def resize_image(input_image, resolution, short = False, interpolation=None):
|
30 |
+
if isinstance(input_image,PIL.Image.Image):
|
31 |
+
mode = 'pil'
|
32 |
+
W,H = input_image.size
|
33 |
+
|
34 |
+
elif isinstance(input_image,np.ndarray):
|
35 |
+
mode = 'cv2'
|
36 |
+
H, W, _ = input_image.shape
|
37 |
+
|
38 |
+
H = float(H)
|
39 |
+
W = float(W)
|
40 |
+
if short:
|
41 |
+
k = float(resolution) / min(H, W) # k>1 放大, k<1 缩小
|
42 |
+
else:
|
43 |
+
k = float(resolution) / max(H, W) # k>1 放大, k<1 缩小
|
44 |
+
H *= k
|
45 |
+
W *= k
|
46 |
+
H = int(np.round(H / 64.0)) * 64
|
47 |
+
W = int(np.round(W / 64.0)) * 64
|
48 |
+
|
49 |
+
if mode == 'cv2':
|
50 |
+
if interpolation is None:
|
51 |
+
interpolation = cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA
|
52 |
+
img = cv2.resize(input_image, (W, H), interpolation=interpolation)
|
53 |
+
|
54 |
+
elif mode == 'pil':
|
55 |
+
if interpolation is None:
|
56 |
+
interpolation = PIL.Image.LANCZOS if k > 1 else PIL.Image.BILINEAR
|
57 |
+
img = input_image.resize((W, H), resample=interpolation)
|
58 |
+
|
59 |
+
return img
|
60 |
+
|
61 |
+
# def resize_image(input_image, resolution):
|
62 |
+
# H, W, C = input_image.shape
|
63 |
+
# H = float(H)
|
64 |
+
# W = float(W)
|
65 |
+
# k = float(resolution) / min(H, W)
|
66 |
+
# H *= k
|
67 |
+
# W *= k
|
68 |
+
# H = int(np.round(H / 64.0)) * 64
|
69 |
+
# W = int(np.round(W / 64.0)) * 64
|
70 |
+
# img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA)
|
71 |
+
# return img
|
72 |
+
|
73 |
+
|
74 |
+
def nms(x, t, s):
|
75 |
+
x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s)
|
76 |
+
|
77 |
+
f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8)
|
78 |
+
f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8)
|
79 |
+
f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8)
|
80 |
+
f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8)
|
81 |
+
|
82 |
+
y = np.zeros_like(x)
|
83 |
+
|
84 |
+
for f in [f1, f2, f3, f4]:
|
85 |
+
np.putmask(y, cv2.dilate(x, kernel=f) == x, x)
|
86 |
+
|
87 |
+
z = np.zeros_like(y, dtype=np.uint8)
|
88 |
+
z[y > t] = 255
|
89 |
+
return z
|
90 |
+
|
91 |
+
|
92 |
+
def make_noise_disk(H, W, C, F):
|
93 |
+
noise = np.random.uniform(low=0, high=1, size=((H // F) + 2, (W // F) + 2, C))
|
94 |
+
noise = cv2.resize(noise, (W + 2 * F, H + 2 * F), interpolation=cv2.INTER_CUBIC)
|
95 |
+
noise = noise[F: F + H, F: F + W]
|
96 |
+
noise -= np.min(noise)
|
97 |
+
noise /= np.max(noise)
|
98 |
+
if C == 1:
|
99 |
+
noise = noise[:, :, None]
|
100 |
+
return noise
|
101 |
+
|
102 |
+
|
103 |
+
def min_max_norm(x):
|
104 |
+
x -= np.min(x)
|
105 |
+
x /= np.maximum(np.max(x), 1e-5)
|
106 |
+
return x
|
107 |
+
|
108 |
+
|
109 |
+
def safe_step(x, step=2):
|
110 |
+
y = x.astype(np.float32) * float(step + 1)
|
111 |
+
y = y.astype(np.int32).astype(np.float32) / float(step)
|
112 |
+
return y
|
113 |
+
|
114 |
+
|
115 |
+
def img2mask(img, H, W, low=10, high=90):
|
116 |
+
assert img.ndim == 3 or img.ndim == 2
|
117 |
+
assert img.dtype == np.uint8
|
118 |
+
|
119 |
+
if img.ndim == 3:
|
120 |
+
y = img[:, :, random.randrange(0, img.shape[2])]
|
121 |
+
else:
|
122 |
+
y = img
|
123 |
+
|
124 |
+
y = cv2.resize(y, (W, H), interpolation=cv2.INTER_CUBIC)
|
125 |
+
|
126 |
+
if random.uniform(0, 1) < 0.5:
|
127 |
+
y = 255 - y
|
128 |
+
|
129 |
+
return y < np.percentile(y, random.randrange(low, high))
|
app.py
CHANGED
@@ -1,104 +1,118 @@
|
|
1 |
import spaces
|
2 |
import random
|
3 |
import torch
|
|
|
|
|
|
|
4 |
from huggingface_hub import snapshot_download
|
5 |
-
from transformers import CLIPVisionModelWithProjection,
|
6 |
-
from
|
|
|
7 |
from kolors.models.modeling_chatglm import ChatGLMModel
|
8 |
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
|
9 |
-
from kolors.models import
|
10 |
-
from diffusers import
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
13 |
|
14 |
device = "cuda"
|
15 |
ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors")
|
16 |
-
|
|
|
17 |
|
18 |
text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half().to(device)
|
19 |
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
|
20 |
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device)
|
21 |
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
ip_img_size = 336
|
26 |
-
clip_image_processor = CLIPImageProcessor(size=ip_img_size, crop_size=ip_img_size)
|
27 |
|
28 |
-
|
29 |
vae=vae,
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
34 |
force_zeros_for_empty_prompt=False
|
35 |
-
)
|
36 |
|
37 |
-
|
38 |
vae=vae,
|
|
|
39 |
text_encoder=text_encoder,
|
40 |
tokenizer=tokenizer,
|
41 |
-
unet=
|
42 |
scheduler=scheduler,
|
43 |
-
image_encoder=image_encoder,
|
44 |
-
feature_extractor=clip_image_processor,
|
45 |
force_zeros_for_empty_prompt=False
|
46 |
-
)
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
MAX_SEED = np.iinfo(np.int32).max
|
54 |
MAX_IMAGE_SIZE = 1024
|
55 |
|
56 |
@spaces.GPU
|
57 |
def infer(prompt,
|
58 |
-
|
59 |
-
|
60 |
negative_prompt = "",
|
61 |
seed = 0,
|
62 |
-
randomize_seed = False,
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
|
|
68 |
if randomize_seed:
|
69 |
seed = random.randint(0, MAX_SEED)
|
70 |
generator = torch.Generator().manual_seed(seed)
|
71 |
-
|
72 |
-
if
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
num_inference_steps = num_inference_steps,
|
79 |
-
width = width,
|
80 |
-
height = height,
|
81 |
-
generator = generator
|
82 |
-
).images[0]
|
83 |
-
return image
|
84 |
else:
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
return image
|
101 |
-
|
102 |
examples = [
|
103 |
|
104 |
]
|
@@ -130,12 +144,19 @@ with gr.Blocks(css=css) as Kolors:
|
|
130 |
lines=2
|
131 |
)
|
132 |
with gr.Row():
|
133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
with gr.Accordion("Advanced Settings", open=False):
|
135 |
negative_prompt = gr.Textbox(
|
136 |
label="Negative prompt",
|
137 |
placeholder="Enter a negative prompt",
|
138 |
visible=True,
|
|
|
139 |
)
|
140 |
seed = gr.Slider(
|
141 |
label="Seed",
|
@@ -145,62 +166,61 @@ with gr.Blocks(css=css) as Kolors:
|
|
145 |
value=0,
|
146 |
)
|
147 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
148 |
-
with gr.Row():
|
149 |
-
width = gr.Slider(
|
150 |
-
label="Width",
|
151 |
-
minimum=256,
|
152 |
-
maximum=MAX_IMAGE_SIZE,
|
153 |
-
step=32,
|
154 |
-
value=1024,
|
155 |
-
)
|
156 |
-
height = gr.Slider(
|
157 |
-
label="Height",
|
158 |
-
minimum=256,
|
159 |
-
maximum=MAX_IMAGE_SIZE,
|
160 |
-
step=32,
|
161 |
-
value=1024,
|
162 |
-
)
|
163 |
with gr.Row():
|
164 |
guidance_scale = gr.Slider(
|
165 |
label="Guidance scale",
|
166 |
minimum=0.0,
|
167 |
maximum=10.0,
|
168 |
step=0.1,
|
169 |
-
value=
|
170 |
)
|
171 |
num_inference_steps = gr.Slider(
|
172 |
label="Number of inference steps",
|
173 |
minimum=10,
|
174 |
maximum=50,
|
175 |
step=1,
|
176 |
-
value=
|
177 |
)
|
178 |
with gr.Row():
|
179 |
-
|
180 |
-
label="
|
181 |
-
info="Use 1 for creating variations",
|
182 |
minimum=0.0,
|
183 |
maximum=1.0,
|
184 |
-
step=0.
|
185 |
-
value=0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
)
|
187 |
with gr.Row():
|
188 |
run_button = gr.Button("Run")
|
189 |
|
190 |
with gr.Column(elem_id="col-right"):
|
191 |
-
result = gr.
|
192 |
|
193 |
with gr.Row():
|
194 |
gr.Examples(
|
195 |
fn = infer,
|
196 |
examples = examples,
|
197 |
-
inputs = [prompt,
|
198 |
outputs = [result]
|
199 |
)
|
200 |
|
201 |
run_button.click(
|
202 |
fn = infer,
|
203 |
-
inputs = [prompt,
|
204 |
outputs = [result]
|
205 |
)
|
206 |
|
|
|
1 |
import spaces
|
2 |
import random
|
3 |
import torch
|
4 |
+
import cv2
|
5 |
+
import gradio as gr
|
6 |
+
import numpy as np
|
7 |
from huggingface_hub import snapshot_download
|
8 |
+
from transformers import CLIPVisionModelWithProjection,CLIPImageProcessor
|
9 |
+
from diffusers.utils import load_image
|
10 |
+
from kolors.pipelines.pipeline_controlnet_xl_kolors_img2img import StableDiffusionXLControlNetImg2ImgPipeline
|
11 |
from kolors.models.modeling_chatglm import ChatGLMModel
|
12 |
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
|
13 |
+
from kolors.models.controlnet import ControlNetModel
|
14 |
+
from diffusers import AutoencoderKL
|
15 |
+
from kolors.models.unet_2d_condition import UNet2DConditionModel
|
16 |
+
from diffusers import EulerDiscreteScheduler
|
17 |
+
from PIL import Image
|
18 |
+
from annotator.midas import MidasDetector
|
19 |
+
from annotator.util import resize_image, HWC3
|
20 |
+
|
21 |
|
22 |
device = "cuda"
|
23 |
ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors")
|
24 |
+
ckpt_dir_depth = snapshot_download(repo_id="Kwai-Kolors/Kolors-ControlNet-Depth")
|
25 |
+
ckpt_dir_canny = snapshot_download(repo_id="Kwai-Kolors/Kolors-ControlNet-Canny")
|
26 |
|
27 |
text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half().to(device)
|
28 |
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
|
29 |
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device)
|
30 |
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
|
31 |
+
unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)
|
32 |
+
controlnet_depth = ControlNetModel.from_pretrained(f"{ckpt_dir_depth}", revision=None).half().to(device)
|
33 |
+
controlnet_canny = ControlNetModel.from_pretrained(f"{ckpt_dir_canny}", revision=None).half().to(device)
|
|
|
|
|
34 |
|
35 |
+
pipe_depth = StableDiffusionXLControlNetImg2ImgPipeline(
|
36 |
vae=vae,
|
37 |
+
controlnet = controlnet_depth,
|
38 |
+
text_encoder=text_encoder,
|
39 |
+
tokenizer=tokenizer,
|
40 |
+
unet=unet,
|
41 |
+
scheduler=scheduler,
|
42 |
force_zeros_for_empty_prompt=False
|
43 |
+
)
|
44 |
|
45 |
+
pipe_canny = StableDiffusionXLControlNetImg2ImgPipeline(
|
46 |
vae=vae,
|
47 |
+
controlnet = controlnet_canny,
|
48 |
text_encoder=text_encoder,
|
49 |
tokenizer=tokenizer,
|
50 |
+
unet=unet,
|
51 |
scheduler=scheduler,
|
|
|
|
|
52 |
force_zeros_for_empty_prompt=False
|
53 |
+
)
|
54 |
|
55 |
+
@spaces.GPU
|
56 |
+
def process_canny_condition(image, canny_threods=[100,200]):
|
57 |
+
np_image = image.copy()
|
58 |
+
np_image = cv2.Canny(np_image, canny_threods[0], canny_threods[1])
|
59 |
+
np_image = np_image[:, :, None]
|
60 |
+
np_image = np.concatenate([np_image, np_image, np_image], axis=2)
|
61 |
+
np_image = HWC3(np_image)
|
62 |
+
return Image.fromarray(np_image)
|
63 |
+
|
64 |
+
model_midas = MidasDetector()
|
65 |
+
|
66 |
+
@spaces.GPU
|
67 |
+
def process_depth_condition_midas(img, res = 1024):
|
68 |
+
h,w,_ = img.shape
|
69 |
+
img = resize_image(HWC3(img), res)
|
70 |
+
result = HWC3(model_midas(img))
|
71 |
+
result = cv2.resize(result, (w,h))
|
72 |
+
return Image.fromarray(result)
|
73 |
|
74 |
MAX_SEED = np.iinfo(np.int32).max
|
75 |
MAX_IMAGE_SIZE = 1024
|
76 |
|
77 |
@spaces.GPU
|
78 |
def infer(prompt,
|
79 |
+
image = None,
|
80 |
+
controlnet_type = "Depth",
|
81 |
negative_prompt = "",
|
82 |
seed = 0,
|
83 |
+
randomize_seed = False,
|
84 |
+
guidance_scale = 6.0,
|
85 |
+
num_inference_steps = 50,
|
86 |
+
controlnet_conditioning_scale = 0.7,
|
87 |
+
control_guidance_end = 0.9,
|
88 |
+
strength = 1.0
|
89 |
+
):
|
90 |
if randomize_seed:
|
91 |
seed = random.randint(0, MAX_SEED)
|
92 |
generator = torch.Generator().manual_seed(seed)
|
93 |
+
init_image = resize_image(image, MAX_IMAGE_SIZE)
|
94 |
+
if controlnet_type == "Depth":
|
95 |
+
pipe = pipe_depth.to("cuda")
|
96 |
+
condi_img = process_depth_condition_midas( np.array(init_image), MAX_IMAGE_SIZE)
|
97 |
+
elif controlnet_type == "Canny":
|
98 |
+
pipe = pipe_canny.to("cuda")
|
99 |
+
condi_img = process_canny_condition(np.array(init_image))
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
else:
|
101 |
+
return None
|
102 |
+
image = pipe(
|
103 |
+
prompt= prompt ,
|
104 |
+
image = init_image,
|
105 |
+
controlnet_conditioning_scale = controlnet_conditioning_scale,
|
106 |
+
control_guidance_end = control_guidance_end,
|
107 |
+
strength= strength ,
|
108 |
+
control_image = condi_img,
|
109 |
+
negative_prompt= negative_prompt ,
|
110 |
+
num_inference_steps= num_inference_steps,
|
111 |
+
guidance_scale= guidance_scale,
|
112 |
+
num_images_per_prompt=1,
|
113 |
+
generator=generator,
|
114 |
+
).images[0]
|
115 |
+
return [condi_img, image]
|
|
|
|
|
116 |
examples = [
|
117 |
|
118 |
]
|
|
|
144 |
lines=2
|
145 |
)
|
146 |
with gr.Row():
|
147 |
+
controlnet_type = gr.Dropdown(
|
148 |
+
["Depth", "Canny"],
|
149 |
+
label = "Controlnet",
|
150 |
+
value="Depth"
|
151 |
+
)
|
152 |
+
with gr.Row():
|
153 |
+
image = gr.Image(label="Image", type="pil")
|
154 |
with gr.Accordion("Advanced Settings", open=False):
|
155 |
negative_prompt = gr.Textbox(
|
156 |
label="Negative prompt",
|
157 |
placeholder="Enter a negative prompt",
|
158 |
visible=True,
|
159 |
+
value="nsfw,脸部阴影,低分辨率,jpeg伪影、模糊、糟糕,黑脸,霓虹灯"
|
160 |
)
|
161 |
seed = gr.Slider(
|
162 |
label="Seed",
|
|
|
166 |
value=0,
|
167 |
)
|
168 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
with gr.Row():
|
170 |
guidance_scale = gr.Slider(
|
171 |
label="Guidance scale",
|
172 |
minimum=0.0,
|
173 |
maximum=10.0,
|
174 |
step=0.1,
|
175 |
+
value=6.0,
|
176 |
)
|
177 |
num_inference_steps = gr.Slider(
|
178 |
label="Number of inference steps",
|
179 |
minimum=10,
|
180 |
maximum=50,
|
181 |
step=1,
|
182 |
+
value=30,
|
183 |
)
|
184 |
with gr.Row():
|
185 |
+
controlnet_conditioning_scale = gr.Slider(
|
186 |
+
label="Controlnet Conditioning Scale",
|
|
|
187 |
minimum=0.0,
|
188 |
maximum=1.0,
|
189 |
+
step=0.1,
|
190 |
+
value=0.7,
|
191 |
+
)
|
192 |
+
control_guidance_end = gr.Slider(
|
193 |
+
label="Control Guidance End",
|
194 |
+
minimum=0.0,
|
195 |
+
maximum=1.0,
|
196 |
+
step=0.1,
|
197 |
+
value=0.9,
|
198 |
+
)
|
199 |
+
with gr.Row():
|
200 |
+
strength = gr.Slider(
|
201 |
+
label="Strength",
|
202 |
+
minimum=0.0,
|
203 |
+
maximum=1.0,
|
204 |
+
step=0.1,
|
205 |
+
value=1.0,
|
206 |
)
|
207 |
with gr.Row():
|
208 |
run_button = gr.Button("Run")
|
209 |
|
210 |
with gr.Column(elem_id="col-right"):
|
211 |
+
result = gr.Gallery(label="Result", show_label=False, columns=2)
|
212 |
|
213 |
with gr.Row():
|
214 |
gr.Examples(
|
215 |
fn = infer,
|
216 |
examples = examples,
|
217 |
+
inputs = [prompt, image, controlnet_type],
|
218 |
outputs = [result]
|
219 |
)
|
220 |
|
221 |
run_button.click(
|
222 |
fn = infer,
|
223 |
+
inputs = [prompt, image, controlnet_type, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength],
|
224 |
outputs = [result]
|
225 |
)
|
226 |
|
kolors/__pycache__/__init__.cpython-38.pyc
DELETED
Binary file (135 Bytes)
|
|
kolors/models/__pycache__/__init__.cpython-38.pyc
DELETED
Binary file (142 Bytes)
|
|
kolors/models/__pycache__/configuration_chatglm.cpython-38.pyc
DELETED
Binary file (1.6 kB)
|
|
kolors/models/__pycache__/modeling_chatglm.cpython-38.pyc
DELETED
Binary file (33.5 kB)
|
|
kolors/models/__pycache__/tokenization_chatglm.cpython-38.pyc
DELETED
Binary file (11.5 kB)
|
|
kolors/models/__pycache__/unet_2d_condition.cpython-38.pyc
DELETED
Binary file (40.3 kB)
|
|
kolors/models/controlnet.py
ADDED
@@ -0,0 +1,887 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from dataclasses import dataclass
|
15 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
16 |
+
|
17 |
+
import torch
|
18 |
+
from torch import nn
|
19 |
+
from torch.nn import functional as F
|
20 |
+
|
21 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
22 |
+
from diffusers.loaders.single_file_model import FromOriginalModelMixin
|
23 |
+
from diffusers.utils import BaseOutput, logging
|
24 |
+
from diffusers.models.attention_processor import (
|
25 |
+
ADDED_KV_ATTENTION_PROCESSORS,
|
26 |
+
CROSS_ATTENTION_PROCESSORS,
|
27 |
+
AttentionProcessor,
|
28 |
+
AttnAddedKVProcessor,
|
29 |
+
AttnProcessor,
|
30 |
+
)
|
31 |
+
from diffusers.models.embeddings import TextImageProjection, TextImageTimeEmbedding, TextTimeEmbedding, TimestepEmbedding, Timesteps
|
32 |
+
from diffusers.models.modeling_utils import ModelMixin
|
33 |
+
|
34 |
+
try:
|
35 |
+
from diffusers.unets.unet_2d_blocks import (
|
36 |
+
CrossAttnDownBlock2D,
|
37 |
+
DownBlock2D,
|
38 |
+
UNetMidBlock2D,
|
39 |
+
UNetMidBlock2DCrossAttn,
|
40 |
+
get_down_block,
|
41 |
+
)
|
42 |
+
from diffusers.unets.unet_2d_condition import UNet2DConditionModel
|
43 |
+
except:
|
44 |
+
from diffusers.models.unets.unet_2d_blocks import (
|
45 |
+
CrossAttnDownBlock2D,
|
46 |
+
DownBlock2D,
|
47 |
+
UNetMidBlock2D,
|
48 |
+
UNetMidBlock2DCrossAttn,
|
49 |
+
get_down_block,
|
50 |
+
)
|
51 |
+
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
|
52 |
+
|
53 |
+
|
54 |
+
|
55 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
56 |
+
|
57 |
+
|
58 |
+
@dataclass
|
59 |
+
class ControlNetOutput(BaseOutput):
|
60 |
+
"""
|
61 |
+
The output of [`ControlNetModel`].
|
62 |
+
|
63 |
+
Args:
|
64 |
+
down_block_res_samples (`tuple[torch.Tensor]`):
|
65 |
+
A tuple of downsample activations at different resolutions for each downsampling block. Each tensor should
|
66 |
+
be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be
|
67 |
+
used to condition the original UNet's downsampling activations.
|
68 |
+
mid_down_block_re_sample (`torch.Tensor`):
|
69 |
+
The activation of the middle block (the lowest sample resolution). Each tensor should be of shape
|
70 |
+
`(batch_size, channel * lowest_resolution, height // lowest_resolution, width // lowest_resolution)`.
|
71 |
+
Output can be used to condition the original UNet's middle block activation.
|
72 |
+
"""
|
73 |
+
|
74 |
+
down_block_res_samples: Tuple[torch.Tensor]
|
75 |
+
mid_block_res_sample: torch.Tensor
|
76 |
+
|
77 |
+
|
78 |
+
class ControlNetConditioningEmbedding(nn.Module):
|
79 |
+
"""
|
80 |
+
Quoting from https://arxiv.org/abs/2302.05543: "Stable Diffusion uses a pre-processing method similar to VQ-GAN
|
81 |
+
[11] to convert the entire dataset of 512 × 512 images into smaller 64 × 64 “latent images” for stabilized
|
82 |
+
training. This requires ControlNets to convert image-based conditions to 64 × 64 feature space to match the
|
83 |
+
convolution size. We use a tiny network E(·) of four convolution layers with 4 × 4 kernels and 2 × 2 strides
|
84 |
+
(activated by ReLU, channels are 16, 32, 64, 128, initialized with Gaussian weights, trained jointly with the full
|
85 |
+
model) to encode image-space conditions ... into feature maps ..."
|
86 |
+
"""
|
87 |
+
|
88 |
+
def __init__(
|
89 |
+
self,
|
90 |
+
conditioning_embedding_channels: int,
|
91 |
+
conditioning_channels: int = 3,
|
92 |
+
block_out_channels: Tuple[int, ...] = (16, 32, 96, 256),
|
93 |
+
):
|
94 |
+
super().__init__()
|
95 |
+
|
96 |
+
self.conv_in = nn.Conv2d(conditioning_channels, block_out_channels[0], kernel_size=3, padding=1)
|
97 |
+
|
98 |
+
self.blocks = nn.ModuleList([])
|
99 |
+
|
100 |
+
for i in range(len(block_out_channels) - 1):
|
101 |
+
channel_in = block_out_channels[i]
|
102 |
+
channel_out = block_out_channels[i + 1]
|
103 |
+
self.blocks.append(nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1))
|
104 |
+
self.blocks.append(nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=2))
|
105 |
+
|
106 |
+
self.conv_out = zero_module(
|
107 |
+
nn.Conv2d(block_out_channels[-1], conditioning_embedding_channels, kernel_size=3, padding=1)
|
108 |
+
)
|
109 |
+
|
110 |
+
def forward(self, conditioning):
|
111 |
+
embedding = self.conv_in(conditioning)
|
112 |
+
embedding = F.silu(embedding)
|
113 |
+
|
114 |
+
for block in self.blocks:
|
115 |
+
embedding = block(embedding)
|
116 |
+
embedding = F.silu(embedding)
|
117 |
+
|
118 |
+
embedding = self.conv_out(embedding)
|
119 |
+
|
120 |
+
return embedding
|
121 |
+
|
122 |
+
|
123 |
+
class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalModelMixin):
|
124 |
+
"""
|
125 |
+
A ControlNet model.
|
126 |
+
|
127 |
+
Args:
|
128 |
+
in_channels (`int`, defaults to 4):
|
129 |
+
The number of channels in the input sample.
|
130 |
+
flip_sin_to_cos (`bool`, defaults to `True`):
|
131 |
+
Whether to flip the sin to cos in the time embedding.
|
132 |
+
freq_shift (`int`, defaults to 0):
|
133 |
+
The frequency shift to apply to the time embedding.
|
134 |
+
down_block_types (`tuple[str]`, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
135 |
+
The tuple of downsample blocks to use.
|
136 |
+
only_cross_attention (`Union[bool, Tuple[bool]]`, defaults to `False`):
|
137 |
+
block_out_channels (`tuple[int]`, defaults to `(320, 640, 1280, 1280)`):
|
138 |
+
The tuple of output channels for each block.
|
139 |
+
layers_per_block (`int`, defaults to 2):
|
140 |
+
The number of layers per block.
|
141 |
+
downsample_padding (`int`, defaults to 1):
|
142 |
+
The padding to use for the downsampling convolution.
|
143 |
+
mid_block_scale_factor (`float`, defaults to 1):
|
144 |
+
The scale factor to use for the mid block.
|
145 |
+
act_fn (`str`, defaults to "silu"):
|
146 |
+
The activation function to use.
|
147 |
+
norm_num_groups (`int`, *optional*, defaults to 32):
|
148 |
+
The number of groups to use for the normalization. If None, normalization and activation layers is skipped
|
149 |
+
in post-processing.
|
150 |
+
norm_eps (`float`, defaults to 1e-5):
|
151 |
+
The epsilon to use for the normalization.
|
152 |
+
cross_attention_dim (`int`, defaults to 1280):
|
153 |
+
The dimension of the cross attention features.
|
154 |
+
transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
|
155 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
156 |
+
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
157 |
+
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
158 |
+
encoder_hid_dim (`int`, *optional*, defaults to None):
|
159 |
+
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
|
160 |
+
dimension to `cross_attention_dim`.
|
161 |
+
encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
|
162 |
+
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
|
163 |
+
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
|
164 |
+
attention_head_dim (`Union[int, Tuple[int]]`, defaults to 8):
|
165 |
+
The dimension of the attention heads.
|
166 |
+
use_linear_projection (`bool`, defaults to `False`):
|
167 |
+
class_embed_type (`str`, *optional*, defaults to `None`):
|
168 |
+
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from None,
|
169 |
+
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
|
170 |
+
addition_embed_type (`str`, *optional*, defaults to `None`):
|
171 |
+
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
|
172 |
+
"text". "text" will use the `TextTimeEmbedding` layer.
|
173 |
+
num_class_embeds (`int`, *optional*, defaults to 0):
|
174 |
+
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
|
175 |
+
class conditioning with `class_embed_type` equal to `None`.
|
176 |
+
upcast_attention (`bool`, defaults to `False`):
|
177 |
+
resnet_time_scale_shift (`str`, defaults to `"default"`):
|
178 |
+
Time scale shift config for ResNet blocks (see `ResnetBlock2D`). Choose from `default` or `scale_shift`.
|
179 |
+
projection_class_embeddings_input_dim (`int`, *optional*, defaults to `None`):
|
180 |
+
The dimension of the `class_labels` input when `class_embed_type="projection"`. Required when
|
181 |
+
`class_embed_type="projection"`.
|
182 |
+
controlnet_conditioning_channel_order (`str`, defaults to `"rgb"`):
|
183 |
+
The channel order of conditional image. Will convert to `rgb` if it's `bgr`.
|
184 |
+
conditioning_embedding_out_channels (`tuple[int]`, *optional*, defaults to `(16, 32, 96, 256)`):
|
185 |
+
The tuple of output channel for each block in the `conditioning_embedding` layer.
|
186 |
+
global_pool_conditions (`bool`, defaults to `False`):
|
187 |
+
TODO(Patrick) - unused parameter.
|
188 |
+
addition_embed_type_num_heads (`int`, defaults to 64):
|
189 |
+
The number of heads to use for the `TextTimeEmbedding` layer.
|
190 |
+
"""
|
191 |
+
|
192 |
+
_supports_gradient_checkpointing = True
|
193 |
+
|
194 |
+
@register_to_config
|
195 |
+
def __init__(
|
196 |
+
self,
|
197 |
+
in_channels: int = 4,
|
198 |
+
conditioning_channels: int = 3,
|
199 |
+
flip_sin_to_cos: bool = True,
|
200 |
+
freq_shift: int = 0,
|
201 |
+
down_block_types: Tuple[str, ...] = (
|
202 |
+
"CrossAttnDownBlock2D",
|
203 |
+
"CrossAttnDownBlock2D",
|
204 |
+
"CrossAttnDownBlock2D",
|
205 |
+
"DownBlock2D",
|
206 |
+
),
|
207 |
+
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
|
208 |
+
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
209 |
+
block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280),
|
210 |
+
layers_per_block: int = 2,
|
211 |
+
downsample_padding: int = 1,
|
212 |
+
mid_block_scale_factor: float = 1,
|
213 |
+
act_fn: str = "silu",
|
214 |
+
norm_num_groups: Optional[int] = 32,
|
215 |
+
norm_eps: float = 1e-5,
|
216 |
+
cross_attention_dim: int = 1280,
|
217 |
+
transformer_layers_per_block: Union[int, Tuple[int, ...]] = 1,
|
218 |
+
encoder_hid_dim: Optional[int] = None,
|
219 |
+
encoder_hid_dim_type: Optional[str] = None,
|
220 |
+
attention_head_dim: Union[int, Tuple[int, ...]] = 8,
|
221 |
+
num_attention_heads: Optional[Union[int, Tuple[int, ...]]] = None,
|
222 |
+
use_linear_projection: bool = False,
|
223 |
+
class_embed_type: Optional[str] = None,
|
224 |
+
addition_embed_type: Optional[str] = None,
|
225 |
+
addition_time_embed_dim: Optional[int] = None,
|
226 |
+
num_class_embeds: Optional[int] = None,
|
227 |
+
upcast_attention: bool = False,
|
228 |
+
resnet_time_scale_shift: str = "default",
|
229 |
+
projection_class_embeddings_input_dim: Optional[int] = None,
|
230 |
+
controlnet_conditioning_channel_order: str = "rgb",
|
231 |
+
conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256),
|
232 |
+
global_pool_conditions: bool = False,
|
233 |
+
addition_embed_type_num_heads: int = 64,
|
234 |
+
):
|
235 |
+
super().__init__()
|
236 |
+
|
237 |
+
# If `num_attention_heads` is not defined (which is the case for most models)
|
238 |
+
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
|
239 |
+
# The reason for this behavior is to correct for incorrectly named variables that were introduced
|
240 |
+
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
|
241 |
+
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
|
242 |
+
# which is why we correct for the naming here.
|
243 |
+
num_attention_heads = num_attention_heads or attention_head_dim
|
244 |
+
|
245 |
+
# Check inputs
|
246 |
+
if len(block_out_channels) != len(down_block_types):
|
247 |
+
raise ValueError(
|
248 |
+
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
249 |
+
)
|
250 |
+
|
251 |
+
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
|
252 |
+
raise ValueError(
|
253 |
+
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
|
254 |
+
)
|
255 |
+
|
256 |
+
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
|
257 |
+
raise ValueError(
|
258 |
+
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
259 |
+
)
|
260 |
+
|
261 |
+
if isinstance(transformer_layers_per_block, int):
|
262 |
+
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
|
263 |
+
|
264 |
+
# input
|
265 |
+
conv_in_kernel = 3
|
266 |
+
conv_in_padding = (conv_in_kernel - 1) // 2
|
267 |
+
self.conv_in = nn.Conv2d(
|
268 |
+
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
|
269 |
+
)
|
270 |
+
|
271 |
+
# time
|
272 |
+
time_embed_dim = block_out_channels[0] * 4
|
273 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
274 |
+
timestep_input_dim = block_out_channels[0]
|
275 |
+
self.time_embedding = TimestepEmbedding(
|
276 |
+
timestep_input_dim,
|
277 |
+
time_embed_dim,
|
278 |
+
act_fn=act_fn,
|
279 |
+
)
|
280 |
+
|
281 |
+
if encoder_hid_dim_type is None and encoder_hid_dim is not None:
|
282 |
+
encoder_hid_dim_type = "text_proj"
|
283 |
+
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
|
284 |
+
logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
|
285 |
+
|
286 |
+
if encoder_hid_dim is None and encoder_hid_dim_type is not None:
|
287 |
+
raise ValueError(
|
288 |
+
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
|
289 |
+
)
|
290 |
+
|
291 |
+
if encoder_hid_dim_type == "text_proj":
|
292 |
+
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
|
293 |
+
elif encoder_hid_dim_type == "text_image_proj":
|
294 |
+
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
295 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
296 |
+
# case when `addition_embed_type == "text_image_proj"` (Kandinsky 2.1)`
|
297 |
+
self.encoder_hid_proj = TextImageProjection(
|
298 |
+
text_embed_dim=encoder_hid_dim,
|
299 |
+
image_embed_dim=cross_attention_dim,
|
300 |
+
cross_attention_dim=cross_attention_dim,
|
301 |
+
)
|
302 |
+
|
303 |
+
elif encoder_hid_dim_type is not None:
|
304 |
+
raise ValueError(
|
305 |
+
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
|
306 |
+
)
|
307 |
+
else:
|
308 |
+
self.encoder_hid_proj = None
|
309 |
+
|
310 |
+
# class embedding
|
311 |
+
if class_embed_type is None and num_class_embeds is not None:
|
312 |
+
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
313 |
+
elif class_embed_type == "timestep":
|
314 |
+
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
|
315 |
+
elif class_embed_type == "identity":
|
316 |
+
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
317 |
+
elif class_embed_type == "projection":
|
318 |
+
if projection_class_embeddings_input_dim is None:
|
319 |
+
raise ValueError(
|
320 |
+
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
|
321 |
+
)
|
322 |
+
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
|
323 |
+
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
|
324 |
+
# 2. it projects from an arbitrary input dimension.
|
325 |
+
#
|
326 |
+
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
|
327 |
+
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
|
328 |
+
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
|
329 |
+
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
330 |
+
else:
|
331 |
+
self.class_embedding = None
|
332 |
+
|
333 |
+
if addition_embed_type == "text":
|
334 |
+
if encoder_hid_dim is not None:
|
335 |
+
text_time_embedding_from_dim = encoder_hid_dim
|
336 |
+
else:
|
337 |
+
text_time_embedding_from_dim = cross_attention_dim
|
338 |
+
|
339 |
+
self.add_embedding = TextTimeEmbedding(
|
340 |
+
text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
|
341 |
+
)
|
342 |
+
elif addition_embed_type == "text_image":
|
343 |
+
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
344 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
345 |
+
# case when `addition_embed_type == "text_image"` (Kandinsky 2.1)`
|
346 |
+
self.add_embedding = TextImageTimeEmbedding(
|
347 |
+
text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
|
348 |
+
)
|
349 |
+
elif addition_embed_type == "text_time":
|
350 |
+
self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
|
351 |
+
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
352 |
+
|
353 |
+
elif addition_embed_type is not None:
|
354 |
+
raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
|
355 |
+
|
356 |
+
# control net conditioning embedding
|
357 |
+
self.controlnet_cond_embedding = ControlNetConditioningEmbedding(
|
358 |
+
conditioning_embedding_channels=block_out_channels[0],
|
359 |
+
block_out_channels=conditioning_embedding_out_channels,
|
360 |
+
conditioning_channels=conditioning_channels,
|
361 |
+
)
|
362 |
+
|
363 |
+
self.down_blocks = nn.ModuleList([])
|
364 |
+
self.controlnet_down_blocks = nn.ModuleList([])
|
365 |
+
|
366 |
+
if isinstance(only_cross_attention, bool):
|
367 |
+
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
368 |
+
|
369 |
+
if isinstance(attention_head_dim, int):
|
370 |
+
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
371 |
+
|
372 |
+
if isinstance(num_attention_heads, int):
|
373 |
+
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
374 |
+
|
375 |
+
# down
|
376 |
+
output_channel = block_out_channels[0]
|
377 |
+
|
378 |
+
controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
|
379 |
+
controlnet_block = zero_module(controlnet_block)
|
380 |
+
self.controlnet_down_blocks.append(controlnet_block)
|
381 |
+
|
382 |
+
for i, down_block_type in enumerate(down_block_types):
|
383 |
+
input_channel = output_channel
|
384 |
+
output_channel = block_out_channels[i]
|
385 |
+
is_final_block = i == len(block_out_channels) - 1
|
386 |
+
|
387 |
+
down_block = get_down_block(
|
388 |
+
down_block_type,
|
389 |
+
num_layers=layers_per_block,
|
390 |
+
transformer_layers_per_block=transformer_layers_per_block[i],
|
391 |
+
in_channels=input_channel,
|
392 |
+
out_channels=output_channel,
|
393 |
+
temb_channels=time_embed_dim,
|
394 |
+
add_downsample=not is_final_block,
|
395 |
+
resnet_eps=norm_eps,
|
396 |
+
resnet_act_fn=act_fn,
|
397 |
+
resnet_groups=norm_num_groups,
|
398 |
+
cross_attention_dim=cross_attention_dim,
|
399 |
+
num_attention_heads=num_attention_heads[i],
|
400 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
401 |
+
downsample_padding=downsample_padding,
|
402 |
+
use_linear_projection=use_linear_projection,
|
403 |
+
only_cross_attention=only_cross_attention[i],
|
404 |
+
upcast_attention=upcast_attention,
|
405 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
406 |
+
)
|
407 |
+
self.down_blocks.append(down_block)
|
408 |
+
|
409 |
+
for _ in range(layers_per_block):
|
410 |
+
controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
|
411 |
+
controlnet_block = zero_module(controlnet_block)
|
412 |
+
self.controlnet_down_blocks.append(controlnet_block)
|
413 |
+
|
414 |
+
if not is_final_block:
|
415 |
+
controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
|
416 |
+
controlnet_block = zero_module(controlnet_block)
|
417 |
+
self.controlnet_down_blocks.append(controlnet_block)
|
418 |
+
|
419 |
+
# mid
|
420 |
+
mid_block_channel = block_out_channels[-1]
|
421 |
+
|
422 |
+
controlnet_block = nn.Conv2d(mid_block_channel, mid_block_channel, kernel_size=1)
|
423 |
+
controlnet_block = zero_module(controlnet_block)
|
424 |
+
self.controlnet_mid_block = controlnet_block
|
425 |
+
|
426 |
+
if mid_block_type == "UNetMidBlock2DCrossAttn":
|
427 |
+
self.mid_block = UNetMidBlock2DCrossAttn(
|
428 |
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
429 |
+
in_channels=mid_block_channel,
|
430 |
+
temb_channels=time_embed_dim,
|
431 |
+
resnet_eps=norm_eps,
|
432 |
+
resnet_act_fn=act_fn,
|
433 |
+
output_scale_factor=mid_block_scale_factor,
|
434 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
435 |
+
cross_attention_dim=cross_attention_dim,
|
436 |
+
num_attention_heads=num_attention_heads[-1],
|
437 |
+
resnet_groups=norm_num_groups,
|
438 |
+
use_linear_projection=use_linear_projection,
|
439 |
+
upcast_attention=upcast_attention,
|
440 |
+
)
|
441 |
+
elif mid_block_type == "UNetMidBlock2D":
|
442 |
+
self.mid_block = UNetMidBlock2D(
|
443 |
+
in_channels=block_out_channels[-1],
|
444 |
+
temb_channels=time_embed_dim,
|
445 |
+
num_layers=0,
|
446 |
+
resnet_eps=norm_eps,
|
447 |
+
resnet_act_fn=act_fn,
|
448 |
+
output_scale_factor=mid_block_scale_factor,
|
449 |
+
resnet_groups=norm_num_groups,
|
450 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
451 |
+
add_attention=False,
|
452 |
+
)
|
453 |
+
else:
|
454 |
+
raise ValueError(f"unknown mid_block_type : {mid_block_type}")
|
455 |
+
|
456 |
+
@classmethod
|
457 |
+
def from_unet(
|
458 |
+
cls,
|
459 |
+
unet: UNet2DConditionModel,
|
460 |
+
controlnet_conditioning_channel_order: str = "rgb",
|
461 |
+
conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256),
|
462 |
+
load_weights_from_unet: bool = True,
|
463 |
+
conditioning_channels: int = 3,
|
464 |
+
):
|
465 |
+
r"""
|
466 |
+
Instantiate a [`ControlNetModel`] from [`UNet2DConditionModel`].
|
467 |
+
|
468 |
+
Parameters:
|
469 |
+
unet (`UNet2DConditionModel`):
|
470 |
+
The UNet model weights to copy to the [`ControlNetModel`]. All configuration options are also copied
|
471 |
+
where applicable.
|
472 |
+
"""
|
473 |
+
transformer_layers_per_block = (
|
474 |
+
unet.config.transformer_layers_per_block if "transformer_layers_per_block" in unet.config else 1
|
475 |
+
)
|
476 |
+
encoder_hid_dim = unet.config.encoder_hid_dim if "encoder_hid_dim" in unet.config else None
|
477 |
+
encoder_hid_dim_type = unet.config.encoder_hid_dim_type if "encoder_hid_dim_type" in unet.config else None
|
478 |
+
addition_embed_type = unet.config.addition_embed_type if "addition_embed_type" in unet.config else None
|
479 |
+
addition_time_embed_dim = (
|
480 |
+
unet.config.addition_time_embed_dim if "addition_time_embed_dim" in unet.config else None
|
481 |
+
)
|
482 |
+
|
483 |
+
controlnet = cls(
|
484 |
+
encoder_hid_dim=encoder_hid_dim,
|
485 |
+
encoder_hid_dim_type=encoder_hid_dim_type,
|
486 |
+
addition_embed_type=addition_embed_type,
|
487 |
+
addition_time_embed_dim=addition_time_embed_dim,
|
488 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
489 |
+
in_channels=unet.config.in_channels,
|
490 |
+
flip_sin_to_cos=unet.config.flip_sin_to_cos,
|
491 |
+
freq_shift=unet.config.freq_shift,
|
492 |
+
down_block_types=unet.config.down_block_types,
|
493 |
+
only_cross_attention=unet.config.only_cross_attention,
|
494 |
+
block_out_channels=unet.config.block_out_channels,
|
495 |
+
layers_per_block=unet.config.layers_per_block,
|
496 |
+
downsample_padding=unet.config.downsample_padding,
|
497 |
+
mid_block_scale_factor=unet.config.mid_block_scale_factor,
|
498 |
+
act_fn=unet.config.act_fn,
|
499 |
+
norm_num_groups=unet.config.norm_num_groups,
|
500 |
+
norm_eps=unet.config.norm_eps,
|
501 |
+
cross_attention_dim=unet.config.cross_attention_dim,
|
502 |
+
attention_head_dim=unet.config.attention_head_dim,
|
503 |
+
num_attention_heads=unet.config.num_attention_heads,
|
504 |
+
use_linear_projection=unet.config.use_linear_projection,
|
505 |
+
class_embed_type=unet.config.class_embed_type,
|
506 |
+
num_class_embeds=unet.config.num_class_embeds,
|
507 |
+
upcast_attention=unet.config.upcast_attention,
|
508 |
+
resnet_time_scale_shift=unet.config.resnet_time_scale_shift,
|
509 |
+
projection_class_embeddings_input_dim=unet.config.projection_class_embeddings_input_dim,
|
510 |
+
mid_block_type=unet.config.mid_block_type,
|
511 |
+
controlnet_conditioning_channel_order=controlnet_conditioning_channel_order,
|
512 |
+
conditioning_embedding_out_channels=conditioning_embedding_out_channels,
|
513 |
+
conditioning_channels=conditioning_channels,
|
514 |
+
)
|
515 |
+
|
516 |
+
if load_weights_from_unet:
|
517 |
+
controlnet.conv_in.load_state_dict(unet.conv_in.state_dict())
|
518 |
+
controlnet.time_proj.load_state_dict(unet.time_proj.state_dict())
|
519 |
+
controlnet.time_embedding.load_state_dict(unet.time_embedding.state_dict())
|
520 |
+
|
521 |
+
if controlnet.class_embedding:
|
522 |
+
controlnet.class_embedding.load_state_dict(unet.class_embedding.state_dict())
|
523 |
+
|
524 |
+
if hasattr(controlnet, "add_embedding"):
|
525 |
+
controlnet.add_embedding.load_state_dict(unet.add_embedding.state_dict())
|
526 |
+
|
527 |
+
controlnet.down_blocks.load_state_dict(unet.down_blocks.state_dict())
|
528 |
+
controlnet.mid_block.load_state_dict(unet.mid_block.state_dict())
|
529 |
+
|
530 |
+
return controlnet
|
531 |
+
|
532 |
+
@property
|
533 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
534 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
535 |
+
r"""
|
536 |
+
Returns:
|
537 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
538 |
+
indexed by its weight name.
|
539 |
+
"""
|
540 |
+
# set recursively
|
541 |
+
processors = {}
|
542 |
+
|
543 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
544 |
+
if hasattr(module, "get_processor"):
|
545 |
+
processors[f"{name}.processor"] = module.get_processor()
|
546 |
+
|
547 |
+
for sub_name, child in module.named_children():
|
548 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
549 |
+
|
550 |
+
return processors
|
551 |
+
|
552 |
+
for name, module in self.named_children():
|
553 |
+
fn_recursive_add_processors(name, module, processors)
|
554 |
+
|
555 |
+
return processors
|
556 |
+
|
557 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
558 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
559 |
+
r"""
|
560 |
+
Sets the attention processor to use to compute attention.
|
561 |
+
|
562 |
+
Parameters:
|
563 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
564 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
565 |
+
for **all** `Attention` layers.
|
566 |
+
|
567 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
568 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
569 |
+
|
570 |
+
"""
|
571 |
+
count = len(self.attn_processors.keys())
|
572 |
+
|
573 |
+
if isinstance(processor, dict) and len(processor) != count:
|
574 |
+
raise ValueError(
|
575 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
576 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
577 |
+
)
|
578 |
+
|
579 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
580 |
+
if hasattr(module, "set_processor"):
|
581 |
+
if not isinstance(processor, dict):
|
582 |
+
module.set_processor(processor)
|
583 |
+
else:
|
584 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
585 |
+
|
586 |
+
for sub_name, child in module.named_children():
|
587 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
588 |
+
|
589 |
+
for name, module in self.named_children():
|
590 |
+
fn_recursive_attn_processor(name, module, processor)
|
591 |
+
|
592 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
|
593 |
+
def set_default_attn_processor(self):
|
594 |
+
"""
|
595 |
+
Disables custom attention processors and sets the default attention implementation.
|
596 |
+
"""
|
597 |
+
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
598 |
+
processor = AttnAddedKVProcessor()
|
599 |
+
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
600 |
+
processor = AttnProcessor()
|
601 |
+
else:
|
602 |
+
raise ValueError(
|
603 |
+
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
604 |
+
)
|
605 |
+
|
606 |
+
self.set_attn_processor(processor)
|
607 |
+
|
608 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attention_slice
|
609 |
+
def set_attention_slice(self, slice_size: Union[str, int, List[int]]) -> None:
|
610 |
+
r"""
|
611 |
+
Enable sliced attention computation.
|
612 |
+
|
613 |
+
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
|
614 |
+
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
|
615 |
+
|
616 |
+
Args:
|
617 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
618 |
+
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
|
619 |
+
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
|
620 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
621 |
+
must be a multiple of `slice_size`.
|
622 |
+
"""
|
623 |
+
sliceable_head_dims = []
|
624 |
+
|
625 |
+
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
|
626 |
+
if hasattr(module, "set_attention_slice"):
|
627 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
628 |
+
|
629 |
+
for child in module.children():
|
630 |
+
fn_recursive_retrieve_sliceable_dims(child)
|
631 |
+
|
632 |
+
# retrieve number of attention layers
|
633 |
+
for module in self.children():
|
634 |
+
fn_recursive_retrieve_sliceable_dims(module)
|
635 |
+
|
636 |
+
num_sliceable_layers = len(sliceable_head_dims)
|
637 |
+
|
638 |
+
if slice_size == "auto":
|
639 |
+
# half the attention head size is usually a good trade-off between
|
640 |
+
# speed and memory
|
641 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
642 |
+
elif slice_size == "max":
|
643 |
+
# make smallest slice possible
|
644 |
+
slice_size = num_sliceable_layers * [1]
|
645 |
+
|
646 |
+
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
647 |
+
|
648 |
+
if len(slice_size) != len(sliceable_head_dims):
|
649 |
+
raise ValueError(
|
650 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
651 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
652 |
+
)
|
653 |
+
|
654 |
+
for i in range(len(slice_size)):
|
655 |
+
size = slice_size[i]
|
656 |
+
dim = sliceable_head_dims[i]
|
657 |
+
if size is not None and size > dim:
|
658 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
659 |
+
|
660 |
+
# Recursively walk through all the children.
|
661 |
+
# Any children which exposes the set_attention_slice method
|
662 |
+
# gets the message
|
663 |
+
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
664 |
+
if hasattr(module, "set_attention_slice"):
|
665 |
+
module.set_attention_slice(slice_size.pop())
|
666 |
+
|
667 |
+
for child in module.children():
|
668 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
669 |
+
|
670 |
+
reversed_slice_size = list(reversed(slice_size))
|
671 |
+
for module in self.children():
|
672 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
673 |
+
|
674 |
+
def _set_gradient_checkpointing(self, module, value: bool = False) -> None:
|
675 |
+
if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D)):
|
676 |
+
module.gradient_checkpointing = value
|
677 |
+
|
678 |
+
def forward(
|
679 |
+
self,
|
680 |
+
sample: torch.Tensor,
|
681 |
+
timestep: Union[torch.Tensor, float, int],
|
682 |
+
encoder_hidden_states: torch.Tensor,
|
683 |
+
controlnet_cond: torch.Tensor,
|
684 |
+
conditioning_scale: float = 1.0,
|
685 |
+
class_labels: Optional[torch.Tensor] = None,
|
686 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
687 |
+
attention_mask: Optional[torch.Tensor] = None,
|
688 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
689 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
690 |
+
guess_mode: bool = False,
|
691 |
+
return_dict: bool = True,
|
692 |
+
) -> Union[ControlNetOutput, Tuple[Tuple[torch.Tensor, ...], torch.Tensor]]:
|
693 |
+
"""
|
694 |
+
The [`ControlNetModel`] forward method.
|
695 |
+
|
696 |
+
Args:
|
697 |
+
sample (`torch.Tensor`):
|
698 |
+
The noisy input tensor.
|
699 |
+
timestep (`Union[torch.Tensor, float, int]`):
|
700 |
+
The number of timesteps to denoise an input.
|
701 |
+
encoder_hidden_states (`torch.Tensor`):
|
702 |
+
The encoder hidden states.
|
703 |
+
controlnet_cond (`torch.Tensor`):
|
704 |
+
The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
|
705 |
+
conditioning_scale (`float`, defaults to `1.0`):
|
706 |
+
The scale factor for ControlNet outputs.
|
707 |
+
class_labels (`torch.Tensor`, *optional*, defaults to `None`):
|
708 |
+
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
|
709 |
+
timestep_cond (`torch.Tensor`, *optional*, defaults to `None`):
|
710 |
+
Additional conditional embeddings for timestep. If provided, the embeddings will be summed with the
|
711 |
+
timestep_embedding passed through the `self.time_embedding` layer to obtain the final timestep
|
712 |
+
embeddings.
|
713 |
+
attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
|
714 |
+
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
715 |
+
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
716 |
+
negative values to the attention scores corresponding to "discard" tokens.
|
717 |
+
added_cond_kwargs (`dict`):
|
718 |
+
Additional conditions for the Stable Diffusion XL UNet.
|
719 |
+
cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`):
|
720 |
+
A kwargs dictionary that if specified is passed along to the `AttnProcessor`.
|
721 |
+
guess_mode (`bool`, defaults to `False`):
|
722 |
+
In this mode, the ControlNet encoder tries its best to recognize the input content of the input even if
|
723 |
+
you remove all prompts. A `guidance_scale` between 3.0 and 5.0 is recommended.
|
724 |
+
return_dict (`bool`, defaults to `True`):
|
725 |
+
Whether or not to return a [`~models.controlnet.ControlNetOutput`] instead of a plain tuple.
|
726 |
+
|
727 |
+
Returns:
|
728 |
+
[`~models.controlnet.ControlNetOutput`] **or** `tuple`:
|
729 |
+
If `return_dict` is `True`, a [`~models.controlnet.ControlNetOutput`] is returned, otherwise a tuple is
|
730 |
+
returned where the first element is the sample tensor.
|
731 |
+
"""
|
732 |
+
# check channel order
|
733 |
+
channel_order = self.config.controlnet_conditioning_channel_order
|
734 |
+
|
735 |
+
if channel_order == "rgb":
|
736 |
+
# in rgb order by default
|
737 |
+
...
|
738 |
+
elif channel_order == "bgr":
|
739 |
+
controlnet_cond = torch.flip(controlnet_cond, dims=[1])
|
740 |
+
else:
|
741 |
+
raise ValueError(f"unknown `controlnet_conditioning_channel_order`: {channel_order}")
|
742 |
+
|
743 |
+
# prepare attention_mask
|
744 |
+
if attention_mask is not None:
|
745 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
746 |
+
attention_mask = attention_mask.unsqueeze(1)
|
747 |
+
|
748 |
+
#Todo
|
749 |
+
if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
|
750 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
|
751 |
+
|
752 |
+
# 1. time
|
753 |
+
timesteps = timestep
|
754 |
+
if not torch.is_tensor(timesteps):
|
755 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
756 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
757 |
+
is_mps = sample.device.type == "mps"
|
758 |
+
if isinstance(timestep, float):
|
759 |
+
dtype = torch.float32 if is_mps else torch.float64
|
760 |
+
else:
|
761 |
+
dtype = torch.int32 if is_mps else torch.int64
|
762 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
763 |
+
elif len(timesteps.shape) == 0:
|
764 |
+
timesteps = timesteps[None].to(sample.device)
|
765 |
+
|
766 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
767 |
+
timesteps = timesteps.expand(sample.shape[0])
|
768 |
+
|
769 |
+
t_emb = self.time_proj(timesteps)
|
770 |
+
|
771 |
+
# timesteps does not contain any weights and will always return f32 tensors
|
772 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
773 |
+
# there might be better ways to encapsulate this.
|
774 |
+
t_emb = t_emb.to(dtype=sample.dtype)
|
775 |
+
|
776 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
777 |
+
aug_emb = None
|
778 |
+
|
779 |
+
if self.class_embedding is not None:
|
780 |
+
if class_labels is None:
|
781 |
+
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
782 |
+
|
783 |
+
if self.config.class_embed_type == "timestep":
|
784 |
+
class_labels = self.time_proj(class_labels)
|
785 |
+
|
786 |
+
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
|
787 |
+
emb = emb + class_emb
|
788 |
+
|
789 |
+
if self.config.addition_embed_type is not None:
|
790 |
+
if self.config.addition_embed_type == "text":
|
791 |
+
aug_emb = self.add_embedding(encoder_hidden_states)
|
792 |
+
|
793 |
+
elif self.config.addition_embed_type == "text_time":
|
794 |
+
if "text_embeds" not in added_cond_kwargs:
|
795 |
+
raise ValueError(
|
796 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
|
797 |
+
)
|
798 |
+
text_embeds = added_cond_kwargs.get("text_embeds")
|
799 |
+
if "time_ids" not in added_cond_kwargs:
|
800 |
+
raise ValueError(
|
801 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
|
802 |
+
)
|
803 |
+
time_ids = added_cond_kwargs.get("time_ids")
|
804 |
+
time_embeds = self.add_time_proj(time_ids.flatten())
|
805 |
+
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
806 |
+
|
807 |
+
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
808 |
+
add_embeds = add_embeds.to(emb.dtype)
|
809 |
+
aug_emb = self.add_embedding(add_embeds)
|
810 |
+
|
811 |
+
emb = emb + aug_emb if aug_emb is not None else emb
|
812 |
+
|
813 |
+
# 2. pre-process
|
814 |
+
sample = self.conv_in(sample)
|
815 |
+
|
816 |
+
controlnet_cond = self.controlnet_cond_embedding(controlnet_cond)
|
817 |
+
sample = sample + controlnet_cond
|
818 |
+
|
819 |
+
# 3. down
|
820 |
+
down_block_res_samples = (sample,)
|
821 |
+
for downsample_block in self.down_blocks:
|
822 |
+
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
823 |
+
sample, res_samples = downsample_block(
|
824 |
+
hidden_states=sample,
|
825 |
+
temb=emb,
|
826 |
+
encoder_hidden_states=encoder_hidden_states,
|
827 |
+
attention_mask=attention_mask,
|
828 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
829 |
+
)
|
830 |
+
else:
|
831 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
832 |
+
|
833 |
+
down_block_res_samples += res_samples
|
834 |
+
|
835 |
+
# 4. mid
|
836 |
+
if self.mid_block is not None:
|
837 |
+
if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
|
838 |
+
sample = self.mid_block(
|
839 |
+
sample,
|
840 |
+
emb,
|
841 |
+
encoder_hidden_states=encoder_hidden_states,
|
842 |
+
attention_mask=attention_mask,
|
843 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
844 |
+
)
|
845 |
+
else:
|
846 |
+
sample = self.mid_block(sample, emb)
|
847 |
+
|
848 |
+
# 5. Control net blocks
|
849 |
+
|
850 |
+
controlnet_down_block_res_samples = ()
|
851 |
+
|
852 |
+
for down_block_res_sample, controlnet_block in zip(down_block_res_samples, self.controlnet_down_blocks):
|
853 |
+
down_block_res_sample = controlnet_block(down_block_res_sample)
|
854 |
+
controlnet_down_block_res_samples = controlnet_down_block_res_samples + (down_block_res_sample,)
|
855 |
+
|
856 |
+
down_block_res_samples = controlnet_down_block_res_samples
|
857 |
+
|
858 |
+
mid_block_res_sample = self.controlnet_mid_block(sample)
|
859 |
+
|
860 |
+
# 6. scaling
|
861 |
+
if guess_mode and not self.config.global_pool_conditions:
|
862 |
+
scales = torch.logspace(-1, 0, len(down_block_res_samples) + 1, device=sample.device) # 0.1 to 1.0
|
863 |
+
scales = scales * conditioning_scale
|
864 |
+
down_block_res_samples = [sample * scale for sample, scale in zip(down_block_res_samples, scales)]
|
865 |
+
mid_block_res_sample = mid_block_res_sample * scales[-1] # last one
|
866 |
+
else:
|
867 |
+
down_block_res_samples = [sample * conditioning_scale for sample in down_block_res_samples]
|
868 |
+
mid_block_res_sample = mid_block_res_sample * conditioning_scale
|
869 |
+
|
870 |
+
if self.config.global_pool_conditions:
|
871 |
+
down_block_res_samples = [
|
872 |
+
torch.mean(sample, dim=(2, 3), keepdim=True) for sample in down_block_res_samples
|
873 |
+
]
|
874 |
+
mid_block_res_sample = torch.mean(mid_block_res_sample, dim=(2, 3), keepdim=True)
|
875 |
+
|
876 |
+
if not return_dict:
|
877 |
+
return (down_block_res_samples, mid_block_res_sample)
|
878 |
+
|
879 |
+
return ControlNetOutput(
|
880 |
+
down_block_res_samples=down_block_res_samples, mid_block_res_sample=mid_block_res_sample
|
881 |
+
)
|
882 |
+
|
883 |
+
|
884 |
+
def zero_module(module):
|
885 |
+
for p in module.parameters():
|
886 |
+
nn.init.zeros_(p)
|
887 |
+
return module
|
kolors/pipelines/__pycache__/__init__.cpython-38.pyc
DELETED
Binary file (145 Bytes)
|
|
kolors/pipelines/__pycache__/pipeline_stable_diffusion_xl_chatglm_256.cpython-38.pyc
DELETED
Binary file (28.2 kB)
|
|
kolors/pipelines/__pycache__/pipeline_stable_diffusion_xl_chatglm_256_ipadapter.cpython-38.pyc
DELETED
Binary file (30.3 kB)
|
|
kolors/pipelines/pipeline_controlnet_xl_kolors_img2img.py
ADDED
@@ -0,0 +1,1365 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
|
16 |
+
import inspect
|
17 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
import PIL.Image
|
21 |
+
import torch
|
22 |
+
import torch.nn.functional as F
|
23 |
+
from transformers import (
|
24 |
+
CLIPImageProcessor,
|
25 |
+
CLIPTextModel,
|
26 |
+
CLIPTextModelWithProjection,
|
27 |
+
CLIPTokenizer,
|
28 |
+
CLIPVisionModelWithProjection,
|
29 |
+
)
|
30 |
+
|
31 |
+
from diffusers.utils.import_utils import is_invisible_watermark_available
|
32 |
+
|
33 |
+
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
|
34 |
+
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
35 |
+
from diffusers.loaders import (
|
36 |
+
FromSingleFileMixin,
|
37 |
+
IPAdapterMixin,
|
38 |
+
StableDiffusionXLLoraLoaderMixin,
|
39 |
+
TextualInversionLoaderMixin,
|
40 |
+
)
|
41 |
+
from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
|
42 |
+
from diffusers.models.attention_processor import (
|
43 |
+
AttnProcessor2_0,
|
44 |
+
XFormersAttnProcessor,
|
45 |
+
)
|
46 |
+
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
47 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
48 |
+
from diffusers.utils import (
|
49 |
+
USE_PEFT_BACKEND,
|
50 |
+
deprecate,
|
51 |
+
logging,
|
52 |
+
replace_example_docstring,
|
53 |
+
scale_lora_layers,
|
54 |
+
unscale_lora_layers,
|
55 |
+
)
|
56 |
+
from diffusers.utils.torch_utils import is_compiled_module, randn_tensor
|
57 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
58 |
+
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
|
59 |
+
from diffusers.pipelines.controlnet import MultiControlNetModel
|
60 |
+
|
61 |
+
from ..models.controlnet import ControlNetModel
|
62 |
+
|
63 |
+
|
64 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
65 |
+
|
66 |
+
|
67 |
+
|
68 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
69 |
+
def retrieve_latents(
|
70 |
+
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
|
71 |
+
):
|
72 |
+
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
|
73 |
+
return encoder_output.latent_dist.sample(generator)
|
74 |
+
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
|
75 |
+
return encoder_output.latent_dist.mode()
|
76 |
+
elif hasattr(encoder_output, "latents"):
|
77 |
+
return encoder_output.latents
|
78 |
+
else:
|
79 |
+
raise AttributeError("Could not access latents of provided encoder_output")
|
80 |
+
|
81 |
+
|
82 |
+
class StableDiffusionXLControlNetImg2ImgPipeline(
|
83 |
+
DiffusionPipeline,
|
84 |
+
StableDiffusionMixin,
|
85 |
+
TextualInversionLoaderMixin,
|
86 |
+
StableDiffusionXLLoraLoaderMixin,
|
87 |
+
FromSingleFileMixin,
|
88 |
+
IPAdapterMixin,
|
89 |
+
):
|
90 |
+
r"""
|
91 |
+
Pipeline for image-to-image generation using Stable Diffusion XL with ControlNet guidance.
|
92 |
+
|
93 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
94 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
95 |
+
|
96 |
+
The pipeline also inherits the following loading methods:
|
97 |
+
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
98 |
+
- [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
99 |
+
- [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
100 |
+
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
101 |
+
|
102 |
+
Args:
|
103 |
+
vae ([`AutoencoderKL`]):
|
104 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
105 |
+
text_encoder ([`CLIPTextModel`]):
|
106 |
+
Frozen text-encoder. Stable Diffusion uses the text portion of
|
107 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
108 |
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
109 |
+
tokenizer (`CLIPTokenizer`):
|
110 |
+
Tokenizer of class
|
111 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
112 |
+
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
113 |
+
controlnet ([`ControlNetModel`] or `List[ControlNetModel]`):
|
114 |
+
Provides additional conditioning to the unet during the denoising process. If you set multiple ControlNets
|
115 |
+
as a list, the outputs from each ControlNet are added together to create one combined additional
|
116 |
+
conditioning.
|
117 |
+
scheduler ([`SchedulerMixin`]):
|
118 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
119 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
120 |
+
requires_aesthetics_score (`bool`, *optional*, defaults to `"False"`):
|
121 |
+
Whether the `unet` requires an `aesthetic_score` condition to be passed during inference. Also see the
|
122 |
+
config of `stabilityai/stable-diffusion-xl-refiner-1-0`.
|
123 |
+
force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`):
|
124 |
+
Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of
|
125 |
+
`stabilityai/stable-diffusion-xl-base-1-0`.
|
126 |
+
add_watermarker (`bool`, *optional*):
|
127 |
+
Whether to use the [invisible_watermark library](https://github.com/ShieldMnt/invisible-watermark/) to
|
128 |
+
watermark output images. If not defined, it will default to True if the package is installed, otherwise no
|
129 |
+
watermarker will be used.
|
130 |
+
feature_extractor ([`~transformers.CLIPImageProcessor`]):
|
131 |
+
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
|
132 |
+
"""
|
133 |
+
|
134 |
+
model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
|
135 |
+
_optional_components = [
|
136 |
+
"tokenizer",
|
137 |
+
"text_encoder",
|
138 |
+
"feature_extractor",
|
139 |
+
"image_encoder",
|
140 |
+
]
|
141 |
+
_callback_tensor_inputs = [
|
142 |
+
"latents",
|
143 |
+
"prompt_embeds",
|
144 |
+
"negative_prompt_embeds",
|
145 |
+
"add_text_embeds",
|
146 |
+
"add_time_ids",
|
147 |
+
"negative_pooled_prompt_embeds",
|
148 |
+
"add_neg_time_ids",
|
149 |
+
]
|
150 |
+
|
151 |
+
def __init__(
|
152 |
+
self,
|
153 |
+
vae: AutoencoderKL,
|
154 |
+
text_encoder: CLIPTextModel,
|
155 |
+
tokenizer: CLIPTokenizer,
|
156 |
+
unet: UNet2DConditionModel,
|
157 |
+
controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel],
|
158 |
+
scheduler: KarrasDiffusionSchedulers,
|
159 |
+
requires_aesthetics_score: bool = False,
|
160 |
+
force_zeros_for_empty_prompt: bool = True,
|
161 |
+
feature_extractor: CLIPImageProcessor = None,
|
162 |
+
image_encoder: CLIPVisionModelWithProjection = None,
|
163 |
+
):
|
164 |
+
super().__init__()
|
165 |
+
|
166 |
+
if isinstance(controlnet, (list, tuple)):
|
167 |
+
controlnet = MultiControlNetModel(controlnet)
|
168 |
+
|
169 |
+
self.register_modules(
|
170 |
+
vae=vae,
|
171 |
+
text_encoder=text_encoder,
|
172 |
+
tokenizer=tokenizer,
|
173 |
+
unet=unet,
|
174 |
+
controlnet=controlnet,
|
175 |
+
scheduler=scheduler,
|
176 |
+
feature_extractor=feature_extractor,
|
177 |
+
image_encoder=image_encoder,
|
178 |
+
)
|
179 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
180 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True)
|
181 |
+
self.control_image_processor = VaeImageProcessor(
|
182 |
+
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
|
183 |
+
)
|
184 |
+
|
185 |
+
self.watermark = None
|
186 |
+
|
187 |
+
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
|
188 |
+
self.register_to_config(requires_aesthetics_score=requires_aesthetics_score)
|
189 |
+
|
190 |
+
|
191 |
+
def encode_prompt(
|
192 |
+
self,
|
193 |
+
prompt,
|
194 |
+
device: Optional[torch.device] = None,
|
195 |
+
num_images_per_prompt: int = 1,
|
196 |
+
do_classifier_free_guidance: bool = True,
|
197 |
+
negative_prompt=None,
|
198 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
199 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
200 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
201 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
202 |
+
lora_scale: Optional[float] = None,
|
203 |
+
):
|
204 |
+
r"""
|
205 |
+
Encodes the prompt into text encoder hidden states.
|
206 |
+
|
207 |
+
Args:
|
208 |
+
prompt (`str` or `List[str]`, *optional*):
|
209 |
+
prompt to be encoded
|
210 |
+
device: (`torch.device`):
|
211 |
+
torch device
|
212 |
+
num_images_per_prompt (`int`):
|
213 |
+
number of images that should be generated per prompt
|
214 |
+
do_classifier_free_guidance (`bool`):
|
215 |
+
whether to use classifier free guidance or not
|
216 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
217 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
218 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
219 |
+
less than `1`).
|
220 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
221 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
222 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
223 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
224 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
225 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
226 |
+
argument.
|
227 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
228 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
229 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
230 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
231 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
232 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
233 |
+
input argument.
|
234 |
+
lora_scale (`float`, *optional*):
|
235 |
+
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
236 |
+
"""
|
237 |
+
# from IPython import embed; embed(); exit()
|
238 |
+
device = device or self._execution_device
|
239 |
+
|
240 |
+
# set lora scale so that monkey patched LoRA
|
241 |
+
# function of text encoder can correctly access it
|
242 |
+
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
|
243 |
+
self._lora_scale = lora_scale
|
244 |
+
|
245 |
+
if prompt is not None and isinstance(prompt, str):
|
246 |
+
batch_size = 1
|
247 |
+
elif prompt is not None and isinstance(prompt, list):
|
248 |
+
batch_size = len(prompt)
|
249 |
+
else:
|
250 |
+
batch_size = prompt_embeds.shape[0]
|
251 |
+
|
252 |
+
# Define tokenizers and text encoders
|
253 |
+
tokenizers = [self.tokenizer]
|
254 |
+
text_encoders = [self.text_encoder]
|
255 |
+
|
256 |
+
if prompt_embeds is None:
|
257 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
258 |
+
prompt_embeds_list = []
|
259 |
+
for tokenizer, text_encoder in zip(tokenizers, text_encoders):
|
260 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
261 |
+
prompt = self.maybe_convert_prompt(prompt, tokenizer)
|
262 |
+
|
263 |
+
text_inputs = tokenizer(
|
264 |
+
prompt,
|
265 |
+
padding="max_length",
|
266 |
+
max_length=256,
|
267 |
+
truncation=True,
|
268 |
+
return_tensors="pt",
|
269 |
+
).to('cuda')
|
270 |
+
output = text_encoder(
|
271 |
+
input_ids=text_inputs['input_ids'] ,
|
272 |
+
attention_mask=text_inputs['attention_mask'],
|
273 |
+
position_ids=text_inputs['position_ids'],
|
274 |
+
output_hidden_states=True)
|
275 |
+
prompt_embeds = output.hidden_states[-2].permute(1, 0, 2).clone()
|
276 |
+
pooled_prompt_embeds = output.hidden_states[-1][-1, :, :].clone() # [batch_size, 4096]
|
277 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
278 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
279 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
280 |
+
|
281 |
+
prompt_embeds_list.append(prompt_embeds)
|
282 |
+
|
283 |
+
# prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
|
284 |
+
prompt_embeds = prompt_embeds_list[0]
|
285 |
+
|
286 |
+
# get unconditional embeddings for classifier free guidance
|
287 |
+
zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
|
288 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
|
289 |
+
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
|
290 |
+
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
|
291 |
+
elif do_classifier_free_guidance and negative_prompt_embeds is None:
|
292 |
+
# negative_prompt = negative_prompt or ""
|
293 |
+
uncond_tokens: List[str]
|
294 |
+
if negative_prompt is None:
|
295 |
+
uncond_tokens = [""] * batch_size
|
296 |
+
elif prompt is not None and type(prompt) is not type(negative_prompt):
|
297 |
+
raise TypeError(
|
298 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
299 |
+
f" {type(prompt)}."
|
300 |
+
)
|
301 |
+
elif isinstance(negative_prompt, str):
|
302 |
+
uncond_tokens = [negative_prompt]
|
303 |
+
elif batch_size != len(negative_prompt):
|
304 |
+
raise ValueError(
|
305 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
306 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
307 |
+
" the batch size of `prompt`."
|
308 |
+
)
|
309 |
+
else:
|
310 |
+
uncond_tokens = negative_prompt
|
311 |
+
|
312 |
+
negative_prompt_embeds_list = []
|
313 |
+
for tokenizer, text_encoder in zip(tokenizers, text_encoders):
|
314 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
315 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
316 |
+
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, tokenizer)
|
317 |
+
|
318 |
+
max_length = prompt_embeds.shape[1]
|
319 |
+
uncond_input = tokenizer(
|
320 |
+
uncond_tokens,
|
321 |
+
padding="max_length",
|
322 |
+
max_length=max_length,
|
323 |
+
truncation=True,
|
324 |
+
return_tensors="pt",
|
325 |
+
).to('cuda')
|
326 |
+
output = text_encoder(
|
327 |
+
input_ids=uncond_input['input_ids'] ,
|
328 |
+
attention_mask=uncond_input['attention_mask'],
|
329 |
+
position_ids=uncond_input['position_ids'],
|
330 |
+
output_hidden_states=True)
|
331 |
+
negative_prompt_embeds = output.hidden_states[-2].permute(1, 0, 2).clone()
|
332 |
+
negative_pooled_prompt_embeds = output.hidden_states[-1][-1, :, :].clone() # [batch_size, 4096]
|
333 |
+
|
334 |
+
if do_classifier_free_guidance:
|
335 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
336 |
+
seq_len = negative_prompt_embeds.shape[1]
|
337 |
+
|
338 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=text_encoder.dtype, device=device)
|
339 |
+
|
340 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
341 |
+
negative_prompt_embeds = negative_prompt_embeds.view(
|
342 |
+
batch_size * num_images_per_prompt, seq_len, -1
|
343 |
+
)
|
344 |
+
|
345 |
+
# For classifier free guidance, we need to do two forward passes.
|
346 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
347 |
+
# to avoid doing two forward passes
|
348 |
+
|
349 |
+
negative_prompt_embeds_list.append(negative_prompt_embeds)
|
350 |
+
|
351 |
+
# negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
|
352 |
+
negative_prompt_embeds = negative_prompt_embeds_list[0]
|
353 |
+
|
354 |
+
bs_embed = pooled_prompt_embeds.shape[0]
|
355 |
+
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
356 |
+
bs_embed * num_images_per_prompt, -1
|
357 |
+
)
|
358 |
+
if do_classifier_free_guidance:
|
359 |
+
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
360 |
+
bs_embed * num_images_per_prompt, -1
|
361 |
+
)
|
362 |
+
|
363 |
+
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
|
364 |
+
|
365 |
+
|
366 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
|
367 |
+
def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
|
368 |
+
dtype = next(self.image_encoder.parameters()).dtype
|
369 |
+
|
370 |
+
if not isinstance(image, torch.Tensor):
|
371 |
+
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
372 |
+
|
373 |
+
image = image.to(device=device, dtype=dtype)
|
374 |
+
if output_hidden_states:
|
375 |
+
image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
|
376 |
+
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
|
377 |
+
uncond_image_enc_hidden_states = self.image_encoder(
|
378 |
+
torch.zeros_like(image), output_hidden_states=True
|
379 |
+
).hidden_states[-2]
|
380 |
+
uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
|
381 |
+
num_images_per_prompt, dim=0
|
382 |
+
)
|
383 |
+
return image_enc_hidden_states, uncond_image_enc_hidden_states
|
384 |
+
else:
|
385 |
+
image_embeds = self.image_encoder(image).image_embeds
|
386 |
+
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
387 |
+
uncond_image_embeds = torch.zeros_like(image_embeds)
|
388 |
+
|
389 |
+
return image_embeds, uncond_image_embeds
|
390 |
+
|
391 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
|
392 |
+
def prepare_ip_adapter_image_embeds(
|
393 |
+
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
|
394 |
+
):
|
395 |
+
image_embeds = []
|
396 |
+
if do_classifier_free_guidance:
|
397 |
+
negative_image_embeds = []
|
398 |
+
if ip_adapter_image_embeds is None:
|
399 |
+
if not isinstance(ip_adapter_image, list):
|
400 |
+
ip_adapter_image = [ip_adapter_image]
|
401 |
+
|
402 |
+
if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
|
403 |
+
raise ValueError(
|
404 |
+
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
|
405 |
+
)
|
406 |
+
|
407 |
+
for single_ip_adapter_image, image_proj_layer in zip(
|
408 |
+
ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
|
409 |
+
):
|
410 |
+
output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
|
411 |
+
single_image_embeds, single_negative_image_embeds = self.encode_image(
|
412 |
+
single_ip_adapter_image, device, 1, output_hidden_state
|
413 |
+
)
|
414 |
+
|
415 |
+
image_embeds.append(single_image_embeds[None, :])
|
416 |
+
if do_classifier_free_guidance:
|
417 |
+
negative_image_embeds.append(single_negative_image_embeds[None, :])
|
418 |
+
else:
|
419 |
+
for single_image_embeds in ip_adapter_image_embeds:
|
420 |
+
if do_classifier_free_guidance:
|
421 |
+
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
|
422 |
+
negative_image_embeds.append(single_negative_image_embeds)
|
423 |
+
image_embeds.append(single_image_embeds)
|
424 |
+
|
425 |
+
ip_adapter_image_embeds = []
|
426 |
+
for i, single_image_embeds in enumerate(image_embeds):
|
427 |
+
single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
|
428 |
+
if do_classifier_free_guidance:
|
429 |
+
single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
|
430 |
+
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)
|
431 |
+
|
432 |
+
single_image_embeds = single_image_embeds.to(device=device)
|
433 |
+
ip_adapter_image_embeds.append(single_image_embeds)
|
434 |
+
|
435 |
+
return ip_adapter_image_embeds
|
436 |
+
|
437 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
438 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
439 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
440 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
441 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
442 |
+
# and should be between [0, 1]
|
443 |
+
|
444 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
445 |
+
extra_step_kwargs = {}
|
446 |
+
if accepts_eta:
|
447 |
+
extra_step_kwargs["eta"] = eta
|
448 |
+
|
449 |
+
# check if the scheduler accepts generator
|
450 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
451 |
+
if accepts_generator:
|
452 |
+
extra_step_kwargs["generator"] = generator
|
453 |
+
return extra_step_kwargs
|
454 |
+
|
455 |
+
def check_inputs(
|
456 |
+
self,
|
457 |
+
prompt,
|
458 |
+
image,
|
459 |
+
strength,
|
460 |
+
num_inference_steps,
|
461 |
+
callback_steps,
|
462 |
+
negative_prompt=None,
|
463 |
+
prompt_embeds=None,
|
464 |
+
negative_prompt_embeds=None,
|
465 |
+
pooled_prompt_embeds=None,
|
466 |
+
negative_pooled_prompt_embeds=None,
|
467 |
+
ip_adapter_image=None,
|
468 |
+
ip_adapter_image_embeds=None,
|
469 |
+
controlnet_conditioning_scale=1.0,
|
470 |
+
control_guidance_start=0.0,
|
471 |
+
control_guidance_end=1.0,
|
472 |
+
callback_on_step_end_tensor_inputs=None,
|
473 |
+
):
|
474 |
+
if strength < 0 or strength > 1:
|
475 |
+
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
|
476 |
+
if num_inference_steps is None:
|
477 |
+
raise ValueError("`num_inference_steps` cannot be None.")
|
478 |
+
elif not isinstance(num_inference_steps, int) or num_inference_steps <= 0:
|
479 |
+
raise ValueError(
|
480 |
+
f"`num_inference_steps` has to be a positive integer but is {num_inference_steps} of type"
|
481 |
+
f" {type(num_inference_steps)}."
|
482 |
+
)
|
483 |
+
|
484 |
+
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
|
485 |
+
raise ValueError(
|
486 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
487 |
+
f" {type(callback_steps)}."
|
488 |
+
)
|
489 |
+
|
490 |
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
491 |
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
492 |
+
):
|
493 |
+
raise ValueError(
|
494 |
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
495 |
+
)
|
496 |
+
|
497 |
+
if prompt is not None and prompt_embeds is not None:
|
498 |
+
raise ValueError(
|
499 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
500 |
+
" only forward one of the two."
|
501 |
+
)
|
502 |
+
elif prompt is None and prompt_embeds is None:
|
503 |
+
raise ValueError(
|
504 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
505 |
+
)
|
506 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
507 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
508 |
+
|
509 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
510 |
+
raise ValueError(
|
511 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
512 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
513 |
+
)
|
514 |
+
|
515 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
516 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
517 |
+
raise ValueError(
|
518 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
519 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
520 |
+
f" {negative_prompt_embeds.shape}."
|
521 |
+
)
|
522 |
+
|
523 |
+
if prompt_embeds is not None and pooled_prompt_embeds is None:
|
524 |
+
raise ValueError(
|
525 |
+
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
|
526 |
+
)
|
527 |
+
|
528 |
+
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
|
529 |
+
raise ValueError(
|
530 |
+
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
|
531 |
+
)
|
532 |
+
|
533 |
+
# `prompt` needs more sophisticated handling when there are multiple
|
534 |
+
# conditionings.
|
535 |
+
if isinstance(self.controlnet, MultiControlNetModel):
|
536 |
+
if isinstance(prompt, list):
|
537 |
+
logger.warning(
|
538 |
+
f"You have {len(self.controlnet.nets)} ControlNets and you have passed {len(prompt)}"
|
539 |
+
" prompts. The conditionings will be fixed across the prompts."
|
540 |
+
)
|
541 |
+
|
542 |
+
# Check `image`
|
543 |
+
is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
|
544 |
+
self.controlnet, torch._dynamo.eval_frame.OptimizedModule
|
545 |
+
)
|
546 |
+
if (
|
547 |
+
isinstance(self.controlnet, ControlNetModel)
|
548 |
+
or is_compiled
|
549 |
+
and isinstance(self.controlnet._orig_mod, ControlNetModel)
|
550 |
+
):
|
551 |
+
self.check_image(image, prompt, prompt_embeds)
|
552 |
+
elif (
|
553 |
+
isinstance(self.controlnet, MultiControlNetModel)
|
554 |
+
or is_compiled
|
555 |
+
and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
|
556 |
+
):
|
557 |
+
if not isinstance(image, list):
|
558 |
+
raise TypeError("For multiple controlnets: `image` must be type `list`")
|
559 |
+
|
560 |
+
# When `image` is a nested list:
|
561 |
+
# (e.g. [[canny_image_1, pose_image_1], [canny_image_2, pose_image_2]])
|
562 |
+
elif any(isinstance(i, list) for i in image):
|
563 |
+
raise ValueError("A single batch of multiple conditionings are supported at the moment.")
|
564 |
+
elif len(image) != len(self.controlnet.nets):
|
565 |
+
raise ValueError(
|
566 |
+
f"For multiple controlnets: `image` must have the same length as the number of controlnets, but got {len(image)} images and {len(self.controlnet.nets)} ControlNets."
|
567 |
+
)
|
568 |
+
|
569 |
+
for image_ in image:
|
570 |
+
self.check_image(image_, prompt, prompt_embeds)
|
571 |
+
else:
|
572 |
+
assert False
|
573 |
+
|
574 |
+
# Check `controlnet_conditioning_scale`
|
575 |
+
if (
|
576 |
+
isinstance(self.controlnet, ControlNetModel)
|
577 |
+
or is_compiled
|
578 |
+
and isinstance(self.controlnet._orig_mod, ControlNetModel)
|
579 |
+
):
|
580 |
+
if not isinstance(controlnet_conditioning_scale, float):
|
581 |
+
raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
|
582 |
+
elif (
|
583 |
+
isinstance(self.controlnet, MultiControlNetModel)
|
584 |
+
or is_compiled
|
585 |
+
and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
|
586 |
+
):
|
587 |
+
if isinstance(controlnet_conditioning_scale, list):
|
588 |
+
if any(isinstance(i, list) for i in controlnet_conditioning_scale):
|
589 |
+
raise ValueError("A single batch of multiple conditionings are supported at the moment.")
|
590 |
+
elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len(
|
591 |
+
self.controlnet.nets
|
592 |
+
):
|
593 |
+
raise ValueError(
|
594 |
+
"For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have"
|
595 |
+
" the same length as the number of controlnets"
|
596 |
+
)
|
597 |
+
else:
|
598 |
+
assert False
|
599 |
+
|
600 |
+
if not isinstance(control_guidance_start, (tuple, list)):
|
601 |
+
control_guidance_start = [control_guidance_start]
|
602 |
+
|
603 |
+
if not isinstance(control_guidance_end, (tuple, list)):
|
604 |
+
control_guidance_end = [control_guidance_end]
|
605 |
+
|
606 |
+
if len(control_guidance_start) != len(control_guidance_end):
|
607 |
+
raise ValueError(
|
608 |
+
f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list."
|
609 |
+
)
|
610 |
+
|
611 |
+
if isinstance(self.controlnet, MultiControlNetModel):
|
612 |
+
if len(control_guidance_start) != len(self.controlnet.nets):
|
613 |
+
raise ValueError(
|
614 |
+
f"`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}."
|
615 |
+
)
|
616 |
+
|
617 |
+
for start, end in zip(control_guidance_start, control_guidance_end):
|
618 |
+
if start >= end:
|
619 |
+
raise ValueError(
|
620 |
+
f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}."
|
621 |
+
)
|
622 |
+
if start < 0.0:
|
623 |
+
raise ValueError(f"control guidance start: {start} can't be smaller than 0.")
|
624 |
+
if end > 1.0:
|
625 |
+
raise ValueError(f"control guidance end: {end} can't be larger than 1.0.")
|
626 |
+
|
627 |
+
if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
|
628 |
+
raise ValueError(
|
629 |
+
"Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
|
630 |
+
)
|
631 |
+
|
632 |
+
if ip_adapter_image_embeds is not None:
|
633 |
+
if not isinstance(ip_adapter_image_embeds, list):
|
634 |
+
raise ValueError(
|
635 |
+
f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
|
636 |
+
)
|
637 |
+
elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
|
638 |
+
raise ValueError(
|
639 |
+
f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
|
640 |
+
)
|
641 |
+
|
642 |
+
# Copied from diffusers.pipelines.controlnet.pipeline_controlnet_sd_xl.StableDiffusionXLControlNetPipeline.check_image
|
643 |
+
def check_image(self, image, prompt, prompt_embeds):
|
644 |
+
image_is_pil = isinstance(image, PIL.Image.Image)
|
645 |
+
image_is_tensor = isinstance(image, torch.Tensor)
|
646 |
+
image_is_np = isinstance(image, np.ndarray)
|
647 |
+
image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
|
648 |
+
image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor)
|
649 |
+
image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray)
|
650 |
+
|
651 |
+
if (
|
652 |
+
not image_is_pil
|
653 |
+
and not image_is_tensor
|
654 |
+
and not image_is_np
|
655 |
+
and not image_is_pil_list
|
656 |
+
and not image_is_tensor_list
|
657 |
+
and not image_is_np_list
|
658 |
+
):
|
659 |
+
raise TypeError(
|
660 |
+
f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}"
|
661 |
+
)
|
662 |
+
|
663 |
+
if image_is_pil:
|
664 |
+
image_batch_size = 1
|
665 |
+
else:
|
666 |
+
image_batch_size = len(image)
|
667 |
+
|
668 |
+
if prompt is not None and isinstance(prompt, str):
|
669 |
+
prompt_batch_size = 1
|
670 |
+
elif prompt is not None and isinstance(prompt, list):
|
671 |
+
prompt_batch_size = len(prompt)
|
672 |
+
elif prompt_embeds is not None:
|
673 |
+
prompt_batch_size = prompt_embeds.shape[0]
|
674 |
+
|
675 |
+
if image_batch_size != 1 and image_batch_size != prompt_batch_size:
|
676 |
+
raise ValueError(
|
677 |
+
f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
|
678 |
+
)
|
679 |
+
|
680 |
+
# Copied from diffusers.pipelines.controlnet.pipeline_controlnet_sd_xl.StableDiffusionXLControlNetPipeline.prepare_image
|
681 |
+
def prepare_control_image(
|
682 |
+
self,
|
683 |
+
image,
|
684 |
+
width,
|
685 |
+
height,
|
686 |
+
batch_size,
|
687 |
+
num_images_per_prompt,
|
688 |
+
device,
|
689 |
+
dtype,
|
690 |
+
do_classifier_free_guidance=False,
|
691 |
+
guess_mode=False,
|
692 |
+
):
|
693 |
+
image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
|
694 |
+
image_batch_size = image.shape[0]
|
695 |
+
|
696 |
+
if image_batch_size == 1:
|
697 |
+
repeat_by = batch_size
|
698 |
+
else:
|
699 |
+
# image batch size is the same as prompt batch size
|
700 |
+
repeat_by = num_images_per_prompt
|
701 |
+
|
702 |
+
image = image.repeat_interleave(repeat_by, dim=0)
|
703 |
+
|
704 |
+
image = image.to(device=device, dtype=dtype)
|
705 |
+
|
706 |
+
if do_classifier_free_guidance and not guess_mode:
|
707 |
+
image = torch.cat([image] * 2)
|
708 |
+
|
709 |
+
return image
|
710 |
+
|
711 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
|
712 |
+
def get_timesteps(self, num_inference_steps, strength, device):
|
713 |
+
# get the original timestep using init_timestep
|
714 |
+
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
715 |
+
|
716 |
+
t_start = max(num_inference_steps - init_timestep, 0)
|
717 |
+
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
|
718 |
+
if hasattr(self.scheduler, "set_begin_index"):
|
719 |
+
self.scheduler.set_begin_index(t_start * self.scheduler.order)
|
720 |
+
|
721 |
+
return timesteps, num_inference_steps - t_start
|
722 |
+
|
723 |
+
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img.StableDiffusionXLImg2ImgPipeline.prepare_latents
|
724 |
+
def prepare_latents(
|
725 |
+
self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None, add_noise=True
|
726 |
+
):
|
727 |
+
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
|
728 |
+
raise ValueError(
|
729 |
+
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
|
730 |
+
)
|
731 |
+
|
732 |
+
# Offload text encoder if `enable_model_cpu_offload` was enabled
|
733 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
734 |
+
torch.cuda.empty_cache()
|
735 |
+
|
736 |
+
image = image.to(device=device, dtype=dtype)
|
737 |
+
|
738 |
+
batch_size = batch_size * num_images_per_prompt
|
739 |
+
|
740 |
+
if image.shape[1] == 4:
|
741 |
+
init_latents = image
|
742 |
+
|
743 |
+
else:
|
744 |
+
# make sure the VAE is in float32 mode, as it overflows in float16
|
745 |
+
if self.vae.config.force_upcast:
|
746 |
+
image = image.float()
|
747 |
+
self.vae.to(dtype=torch.float32)
|
748 |
+
|
749 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
750 |
+
raise ValueError(
|
751 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
752 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
753 |
+
)
|
754 |
+
|
755 |
+
elif isinstance(generator, list):
|
756 |
+
init_latents = [
|
757 |
+
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
|
758 |
+
for i in range(batch_size)
|
759 |
+
]
|
760 |
+
init_latents = torch.cat(init_latents, dim=0)
|
761 |
+
else:
|
762 |
+
init_latents = retrieve_latents(self.vae.encode(image), generator=generator)
|
763 |
+
|
764 |
+
if self.vae.config.force_upcast:
|
765 |
+
self.vae.to(dtype)
|
766 |
+
|
767 |
+
init_latents = init_latents.to(dtype)
|
768 |
+
|
769 |
+
init_latents = self.vae.config.scaling_factor * init_latents
|
770 |
+
|
771 |
+
if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
|
772 |
+
# expand init_latents for batch_size
|
773 |
+
additional_image_per_prompt = batch_size // init_latents.shape[0]
|
774 |
+
init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0)
|
775 |
+
elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
|
776 |
+
raise ValueError(
|
777 |
+
f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
|
778 |
+
)
|
779 |
+
else:
|
780 |
+
init_latents = torch.cat([init_latents], dim=0)
|
781 |
+
|
782 |
+
if add_noise:
|
783 |
+
shape = init_latents.shape
|
784 |
+
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
785 |
+
# get latents
|
786 |
+
init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
|
787 |
+
|
788 |
+
latents = init_latents
|
789 |
+
|
790 |
+
return latents
|
791 |
+
|
792 |
+
|
793 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
794 |
+
def prepare_latents_t2i(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
795 |
+
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
796 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
797 |
+
raise ValueError(
|
798 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
799 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
800 |
+
)
|
801 |
+
|
802 |
+
if latents is None:
|
803 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
804 |
+
else:
|
805 |
+
latents = latents.to(device)
|
806 |
+
|
807 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
808 |
+
latents = latents * self.scheduler.init_noise_sigma
|
809 |
+
return latents
|
810 |
+
|
811 |
+
|
812 |
+
|
813 |
+
def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, dtype):
|
814 |
+
add_time_ids = list(original_size + crops_coords_top_left + target_size)
|
815 |
+
|
816 |
+
passed_add_embed_dim = (
|
817 |
+
self.unet.config.addition_time_embed_dim * len(add_time_ids) + 4096
|
818 |
+
)
|
819 |
+
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
|
820 |
+
|
821 |
+
if expected_add_embed_dim != passed_add_embed_dim:
|
822 |
+
raise ValueError(
|
823 |
+
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
|
824 |
+
)
|
825 |
+
|
826 |
+
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
|
827 |
+
return add_time_ids
|
828 |
+
|
829 |
+
|
830 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
|
831 |
+
def upcast_vae(self):
|
832 |
+
dtype = self.vae.dtype
|
833 |
+
self.vae.to(dtype=torch.float32)
|
834 |
+
use_torch_2_0_or_xformers = isinstance(
|
835 |
+
self.vae.decoder.mid_block.attentions[0].processor,
|
836 |
+
(
|
837 |
+
AttnProcessor2_0,
|
838 |
+
XFormersAttnProcessor,
|
839 |
+
),
|
840 |
+
)
|
841 |
+
# if xformers or torch_2_0 is used attention block does not need
|
842 |
+
# to be in float32 which can save lots of memory
|
843 |
+
if use_torch_2_0_or_xformers:
|
844 |
+
self.vae.post_quant_conv.to(dtype)
|
845 |
+
self.vae.decoder.conv_in.to(dtype)
|
846 |
+
self.vae.decoder.mid_block.to(dtype)
|
847 |
+
|
848 |
+
@property
|
849 |
+
def guidance_scale(self):
|
850 |
+
return self._guidance_scale
|
851 |
+
|
852 |
+
@property
|
853 |
+
def clip_skip(self):
|
854 |
+
return self._clip_skip
|
855 |
+
|
856 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
857 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
858 |
+
# corresponds to doing no classifier free guidance.
|
859 |
+
@property
|
860 |
+
def do_classifier_free_guidance(self):
|
861 |
+
return self._guidance_scale > 1
|
862 |
+
|
863 |
+
@property
|
864 |
+
def cross_attention_kwargs(self):
|
865 |
+
return self._cross_attention_kwargs
|
866 |
+
|
867 |
+
@property
|
868 |
+
def num_timesteps(self):
|
869 |
+
return self._num_timesteps
|
870 |
+
|
871 |
+
@torch.no_grad()
|
872 |
+
def __call__(
|
873 |
+
self,
|
874 |
+
prompt: Union[str, List[str]] = None,
|
875 |
+
image: PipelineImageInput = None,
|
876 |
+
control_image: PipelineImageInput = None,
|
877 |
+
height: Optional[int] = None,
|
878 |
+
width: Optional[int] = None,
|
879 |
+
strength: float = 0.8,
|
880 |
+
num_inference_steps: int = 50,
|
881 |
+
guidance_scale: float = 5.0,
|
882 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
883 |
+
num_images_per_prompt: Optional[int] = 1,
|
884 |
+
eta: float = 0.0,
|
885 |
+
guess_mode: bool = False,
|
886 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
887 |
+
latents: Optional[torch.Tensor] = None,
|
888 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
889 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
890 |
+
pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
891 |
+
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
892 |
+
ip_adapter_image: Optional[PipelineImageInput] = None,
|
893 |
+
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
|
894 |
+
output_type: Optional[str] = "pil",
|
895 |
+
return_dict: bool = True,
|
896 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
897 |
+
controlnet_conditioning_scale: Union[float, List[float]] = 0.8,
|
898 |
+
control_guidance_start: Union[float, List[float]] = 0.0,
|
899 |
+
control_guidance_end: Union[float, List[float]] = 1.0,
|
900 |
+
original_size: Tuple[int, int] = None,
|
901 |
+
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
902 |
+
target_size: Tuple[int, int] = None,
|
903 |
+
clip_skip: Optional[int] = None,
|
904 |
+
callback_on_step_end: Optional[
|
905 |
+
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
|
906 |
+
] = None,
|
907 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
908 |
+
**kwargs,
|
909 |
+
):
|
910 |
+
r"""
|
911 |
+
Function invoked when calling the pipeline for generation.
|
912 |
+
|
913 |
+
Args:
|
914 |
+
prompt (`str` or `List[str]`, *optional*):
|
915 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
916 |
+
instead.
|
917 |
+
image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
|
918 |
+
`List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
|
919 |
+
The initial image will be used as the starting point for the image generation process. Can also accept
|
920 |
+
image latents as `image`, if passing latents directly, it will not be encoded again.
|
921 |
+
control_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
|
922 |
+
`List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
|
923 |
+
The ControlNet input condition. ControlNet uses this input condition to generate guidance to Unet. If
|
924 |
+
the type is specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also
|
925 |
+
be accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If height
|
926 |
+
and/or width are passed, `image` is resized according to them. If multiple ControlNets are specified in
|
927 |
+
init, images must be passed as a list such that each element of the list can be correctly batched for
|
928 |
+
input to a single controlnet.
|
929 |
+
height (`int`, *optional*, defaults to the size of control_image):
|
930 |
+
The height in pixels of the generated image. Anything below 512 pixels won't work well for
|
931 |
+
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
932 |
+
and checkpoints that are not specifically fine-tuned on low resolutions.
|
933 |
+
width (`int`, *optional*, defaults to the size of control_image):
|
934 |
+
The width in pixels of the generated image. Anything below 512 pixels won't work well for
|
935 |
+
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
936 |
+
and checkpoints that are not specifically fine-tuned on low resolutions.
|
937 |
+
strength (`float`, *optional*, defaults to 0.8):
|
938 |
+
Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
|
939 |
+
starting point and more noise is added the higher the `strength`. The number of denoising steps depends
|
940 |
+
on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
|
941 |
+
process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
|
942 |
+
essentially ignores `image`.
|
943 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
944 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
945 |
+
expense of slower inference.
|
946 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
947 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
948 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
949 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
950 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
951 |
+
usually at the expense of lower image quality.
|
952 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
953 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
954 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
955 |
+
less than `1`).
|
956 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
957 |
+
The number of images to generate per prompt.
|
958 |
+
eta (`float`, *optional*, defaults to 0.0):
|
959 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
960 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
961 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
962 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
963 |
+
to make generation deterministic.
|
964 |
+
latents (`torch.Tensor`, *optional*):
|
965 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
966 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
967 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
968 |
+
prompt_embeds (`torch.Tensor`, *optional*):
|
969 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
970 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
971 |
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
972 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
973 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
974 |
+
argument.
|
975 |
+
pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
976 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
977 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
978 |
+
negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
979 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
980 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
981 |
+
input argument.
|
982 |
+
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
983 |
+
ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
|
984 |
+
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
|
985 |
+
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
|
986 |
+
contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
|
987 |
+
provided, embeddings are computed from the `ip_adapter_image` input argument.
|
988 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
989 |
+
The output format of the generate image. Choose between
|
990 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
991 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
992 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
993 |
+
plain tuple.
|
994 |
+
cross_attention_kwargs (`dict`, *optional*):
|
995 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
996 |
+
`self.processor` in
|
997 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
998 |
+
controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
|
999 |
+
The outputs of the controlnet are multiplied by `controlnet_conditioning_scale` before they are added
|
1000 |
+
to the residual in the original unet. If multiple ControlNets are specified in init, you can set the
|
1001 |
+
corresponding scale as a list.
|
1002 |
+
control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
|
1003 |
+
The percentage of total steps at which the controlnet starts applying.
|
1004 |
+
control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
|
1005 |
+
The percentage of total steps at which the controlnet stops applying.
|
1006 |
+
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
1007 |
+
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
|
1008 |
+
`original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
|
1009 |
+
explained in section 2.2 of
|
1010 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
1011 |
+
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
1012 |
+
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
|
1013 |
+
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
|
1014 |
+
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
|
1015 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
1016 |
+
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
1017 |
+
For most cases, `target_size` should be set to the desired height and width of the generated image. If
|
1018 |
+
not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
|
1019 |
+
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
1020 |
+
clip_skip (`int`, *optional*):
|
1021 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
1022 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
1023 |
+
callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
|
1024 |
+
A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
|
1025 |
+
each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
|
1026 |
+
DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
|
1027 |
+
list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
|
1028 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
1029 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
1030 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
1031 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
1032 |
+
|
1033 |
+
Examples:
|
1034 |
+
|
1035 |
+
Returns:
|
1036 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
1037 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple`
|
1038 |
+
containing the output images.
|
1039 |
+
"""
|
1040 |
+
|
1041 |
+
callback = kwargs.pop("callback", None)
|
1042 |
+
callback_steps = kwargs.pop("callback_steps", None)
|
1043 |
+
|
1044 |
+
if callback is not None:
|
1045 |
+
deprecate(
|
1046 |
+
"callback",
|
1047 |
+
"1.0.0",
|
1048 |
+
"Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
1049 |
+
)
|
1050 |
+
if callback_steps is not None:
|
1051 |
+
deprecate(
|
1052 |
+
"callback_steps",
|
1053 |
+
"1.0.0",
|
1054 |
+
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
1055 |
+
)
|
1056 |
+
|
1057 |
+
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
1058 |
+
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
1059 |
+
|
1060 |
+
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
|
1061 |
+
|
1062 |
+
# align format for control guidance
|
1063 |
+
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
|
1064 |
+
control_guidance_start = len(control_guidance_end) * [control_guidance_start]
|
1065 |
+
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
|
1066 |
+
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
|
1067 |
+
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
|
1068 |
+
mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
|
1069 |
+
control_guidance_start, control_guidance_end = (
|
1070 |
+
mult * [control_guidance_start],
|
1071 |
+
mult * [control_guidance_end],
|
1072 |
+
)
|
1073 |
+
|
1074 |
+
# from IPython import embed; embed()
|
1075 |
+
# 1. Check inputs. Raise error if not correct
|
1076 |
+
self.check_inputs(
|
1077 |
+
prompt,
|
1078 |
+
control_image,
|
1079 |
+
strength,
|
1080 |
+
num_inference_steps,
|
1081 |
+
callback_steps,
|
1082 |
+
negative_prompt,
|
1083 |
+
prompt_embeds,
|
1084 |
+
negative_prompt_embeds,
|
1085 |
+
pooled_prompt_embeds,
|
1086 |
+
negative_pooled_prompt_embeds,
|
1087 |
+
ip_adapter_image,
|
1088 |
+
ip_adapter_image_embeds,
|
1089 |
+
controlnet_conditioning_scale,
|
1090 |
+
control_guidance_start,
|
1091 |
+
control_guidance_end,
|
1092 |
+
callback_on_step_end_tensor_inputs,
|
1093 |
+
)
|
1094 |
+
|
1095 |
+
self._guidance_scale = guidance_scale
|
1096 |
+
self._clip_skip = clip_skip
|
1097 |
+
self._cross_attention_kwargs = cross_attention_kwargs
|
1098 |
+
|
1099 |
+
# 2. Define call parameters
|
1100 |
+
if prompt is not None and isinstance(prompt, str):
|
1101 |
+
batch_size = 1
|
1102 |
+
elif prompt is not None and isinstance(prompt, list):
|
1103 |
+
batch_size = len(prompt)
|
1104 |
+
else:
|
1105 |
+
batch_size = prompt_embeds.shape[0]
|
1106 |
+
|
1107 |
+
device = self._execution_device
|
1108 |
+
|
1109 |
+
if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
|
1110 |
+
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)
|
1111 |
+
|
1112 |
+
# 3.1. Encode input prompt
|
1113 |
+
text_encoder_lora_scale = (
|
1114 |
+
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
|
1115 |
+
)
|
1116 |
+
(
|
1117 |
+
prompt_embeds,
|
1118 |
+
negative_prompt_embeds,
|
1119 |
+
pooled_prompt_embeds,
|
1120 |
+
negative_pooled_prompt_embeds,
|
1121 |
+
) = self.encode_prompt(
|
1122 |
+
prompt,
|
1123 |
+
device,
|
1124 |
+
num_images_per_prompt,
|
1125 |
+
self.do_classifier_free_guidance,
|
1126 |
+
negative_prompt,
|
1127 |
+
prompt_embeds=prompt_embeds,
|
1128 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
1129 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
1130 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
1131 |
+
lora_scale=text_encoder_lora_scale,
|
1132 |
+
)
|
1133 |
+
|
1134 |
+
# 3.2 Encode ip_adapter_image
|
1135 |
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
1136 |
+
image_embeds = self.prepare_ip_adapter_image_embeds(
|
1137 |
+
ip_adapter_image,
|
1138 |
+
ip_adapter_image_embeds,
|
1139 |
+
device,
|
1140 |
+
batch_size * num_images_per_prompt,
|
1141 |
+
self.do_classifier_free_guidance,
|
1142 |
+
)
|
1143 |
+
|
1144 |
+
# 4. Prepare image and controlnet_conditioning_image
|
1145 |
+
image = self.image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
|
1146 |
+
|
1147 |
+
if isinstance(controlnet, ControlNetModel):
|
1148 |
+
control_image = self.prepare_control_image(
|
1149 |
+
image=control_image,
|
1150 |
+
width=width,
|
1151 |
+
height=height,
|
1152 |
+
batch_size=batch_size * num_images_per_prompt,
|
1153 |
+
num_images_per_prompt=num_images_per_prompt,
|
1154 |
+
device=device,
|
1155 |
+
dtype=controlnet.dtype,
|
1156 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
1157 |
+
guess_mode=guess_mode,
|
1158 |
+
)
|
1159 |
+
height, width = control_image.shape[-2:]
|
1160 |
+
elif isinstance(controlnet, MultiControlNetModel):
|
1161 |
+
control_images = []
|
1162 |
+
|
1163 |
+
for control_image_ in control_image:
|
1164 |
+
control_image_ = self.prepare_control_image(
|
1165 |
+
image=control_image_,
|
1166 |
+
width=width,
|
1167 |
+
height=height,
|
1168 |
+
batch_size=batch_size * num_images_per_prompt,
|
1169 |
+
num_images_per_prompt=num_images_per_prompt,
|
1170 |
+
device=device,
|
1171 |
+
dtype=controlnet.dtype,
|
1172 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
1173 |
+
guess_mode=guess_mode,
|
1174 |
+
)
|
1175 |
+
|
1176 |
+
control_images.append(control_image_)
|
1177 |
+
|
1178 |
+
control_image = control_images
|
1179 |
+
height, width = control_image[0].shape[-2:]
|
1180 |
+
else:
|
1181 |
+
assert False
|
1182 |
+
|
1183 |
+
# 5. Prepare timesteps
|
1184 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
1185 |
+
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
|
1186 |
+
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
|
1187 |
+
self._num_timesteps = len(timesteps)
|
1188 |
+
|
1189 |
+
# 6. Prepare latent variables
|
1190 |
+
|
1191 |
+
num_channels_latents = self.unet.config.in_channels
|
1192 |
+
if latents is None:
|
1193 |
+
if strength >= 1.0:
|
1194 |
+
latents = self.prepare_latents_t2i(
|
1195 |
+
batch_size * num_images_per_prompt,
|
1196 |
+
num_channels_latents,
|
1197 |
+
height,
|
1198 |
+
width,
|
1199 |
+
prompt_embeds.dtype,
|
1200 |
+
device,
|
1201 |
+
generator,
|
1202 |
+
latents,
|
1203 |
+
)
|
1204 |
+
else:
|
1205 |
+
latents = self.prepare_latents(
|
1206 |
+
image,
|
1207 |
+
latent_timestep,
|
1208 |
+
batch_size,
|
1209 |
+
num_images_per_prompt,
|
1210 |
+
prompt_embeds.dtype,
|
1211 |
+
device,
|
1212 |
+
generator,
|
1213 |
+
True,
|
1214 |
+
)
|
1215 |
+
|
1216 |
+
|
1217 |
+
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
1218 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
1219 |
+
|
1220 |
+
# 7.1 Create tensor stating which controlnets to keep
|
1221 |
+
controlnet_keep = []
|
1222 |
+
for i in range(len(timesteps)):
|
1223 |
+
keeps = [
|
1224 |
+
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
|
1225 |
+
for s, e in zip(control_guidance_start, control_guidance_end)
|
1226 |
+
]
|
1227 |
+
controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)
|
1228 |
+
|
1229 |
+
# 7.2 Prepare added time ids & embeddings
|
1230 |
+
if isinstance(control_image, list):
|
1231 |
+
original_size = original_size or control_image[0].shape[-2:]
|
1232 |
+
else:
|
1233 |
+
original_size = original_size or control_image.shape[-2:]
|
1234 |
+
target_size = target_size or (height, width)
|
1235 |
+
|
1236 |
+
# 7. Prepare added time ids & embeddings
|
1237 |
+
add_text_embeds = pooled_prompt_embeds
|
1238 |
+
add_time_ids = self._get_add_time_ids(
|
1239 |
+
original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype
|
1240 |
+
)
|
1241 |
+
|
1242 |
+
if self.do_classifier_free_guidance:
|
1243 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
1244 |
+
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
1245 |
+
add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0)
|
1246 |
+
|
1247 |
+
prompt_embeds = prompt_embeds.to(device)
|
1248 |
+
add_text_embeds = add_text_embeds.to(device)
|
1249 |
+
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
|
1250 |
+
|
1251 |
+
# 8. Denoising loop
|
1252 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
1253 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
1254 |
+
for i, t in enumerate(timesteps):
|
1255 |
+
# expand the latents if we are doing classifier free guidance
|
1256 |
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
1257 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
1258 |
+
|
1259 |
+
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
1260 |
+
|
1261 |
+
# controlnet(s) inference
|
1262 |
+
if guess_mode and self.do_classifier_free_guidance:
|
1263 |
+
# Infer ControlNet only for the conditional batch.
|
1264 |
+
control_model_input = latents
|
1265 |
+
control_model_input = self.scheduler.scale_model_input(control_model_input, t)
|
1266 |
+
controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
|
1267 |
+
controlnet_added_cond_kwargs = {
|
1268 |
+
"text_embeds": add_text_embeds.chunk(2)[1],
|
1269 |
+
"time_ids": add_time_ids.chunk(2)[1],
|
1270 |
+
}
|
1271 |
+
else:
|
1272 |
+
control_model_input = latent_model_input
|
1273 |
+
controlnet_prompt_embeds = prompt_embeds
|
1274 |
+
controlnet_added_cond_kwargs = added_cond_kwargs
|
1275 |
+
|
1276 |
+
if isinstance(controlnet_keep[i], list):
|
1277 |
+
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
|
1278 |
+
else:
|
1279 |
+
controlnet_cond_scale = controlnet_conditioning_scale
|
1280 |
+
if isinstance(controlnet_cond_scale, list):
|
1281 |
+
controlnet_cond_scale = controlnet_cond_scale[0]
|
1282 |
+
cond_scale = controlnet_cond_scale * controlnet_keep[i]
|
1283 |
+
|
1284 |
+
down_block_res_samples, mid_block_res_sample = self.controlnet(
|
1285 |
+
control_model_input,
|
1286 |
+
t,
|
1287 |
+
encoder_hidden_states=controlnet_prompt_embeds,
|
1288 |
+
controlnet_cond=control_image,
|
1289 |
+
conditioning_scale=cond_scale,
|
1290 |
+
guess_mode=guess_mode,
|
1291 |
+
added_cond_kwargs=controlnet_added_cond_kwargs,
|
1292 |
+
return_dict=False,
|
1293 |
+
)
|
1294 |
+
|
1295 |
+
if guess_mode and self.do_classifier_free_guidance:
|
1296 |
+
# Infered ControlNet only for the conditional batch.
|
1297 |
+
# To apply the output of ControlNet to both the unconditional and conditional batches,
|
1298 |
+
# add 0 to the unconditional batch to keep it unchanged.
|
1299 |
+
down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
|
1300 |
+
mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
|
1301 |
+
|
1302 |
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
1303 |
+
added_cond_kwargs["image_embeds"] = image_embeds
|
1304 |
+
|
1305 |
+
# predict the noise residual
|
1306 |
+
noise_pred = self.unet(
|
1307 |
+
latent_model_input,
|
1308 |
+
t,
|
1309 |
+
encoder_hidden_states=prompt_embeds,
|
1310 |
+
cross_attention_kwargs=self.cross_attention_kwargs,
|
1311 |
+
down_block_additional_residuals=down_block_res_samples,
|
1312 |
+
mid_block_additional_residual=mid_block_res_sample,
|
1313 |
+
added_cond_kwargs=added_cond_kwargs,
|
1314 |
+
return_dict=False,
|
1315 |
+
)[0]
|
1316 |
+
|
1317 |
+
# perform guidance
|
1318 |
+
if self.do_classifier_free_guidance:
|
1319 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
1320 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1321 |
+
|
1322 |
+
# compute the previous noisy sample x_t -> x_t-1
|
1323 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
1324 |
+
|
1325 |
+
# call the callback, if provided
|
1326 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
1327 |
+
progress_bar.update()
|
1328 |
+
if callback is not None and i % callback_steps == 0:
|
1329 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
1330 |
+
callback(step_idx, t, latents)
|
1331 |
+
|
1332 |
+
# If we do sequential model offloading, let's offload unet and controlnet
|
1333 |
+
# manually for max memory savings
|
1334 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
1335 |
+
self.unet.to("cpu")
|
1336 |
+
self.controlnet.to("cpu")
|
1337 |
+
torch.cuda.empty_cache()
|
1338 |
+
|
1339 |
+
if not output_type == "latent":
|
1340 |
+
# make sure the VAE is in float32 mode, as it overflows in float16
|
1341 |
+
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
1342 |
+
|
1343 |
+
if needs_upcasting:
|
1344 |
+
self.upcast_vae()
|
1345 |
+
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
1346 |
+
|
1347 |
+
latents = latents / self.vae.config.scaling_factor
|
1348 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
1349 |
+
|
1350 |
+
# cast back to fp16 if needed
|
1351 |
+
if needs_upcasting:
|
1352 |
+
self.vae.to(dtype=torch.float16)
|
1353 |
+
else:
|
1354 |
+
image = latents
|
1355 |
+
return StableDiffusionXLPipelineOutput(images=image)
|
1356 |
+
|
1357 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
1358 |
+
|
1359 |
+
# Offload all models
|
1360 |
+
self.maybe_free_model_hooks()
|
1361 |
+
|
1362 |
+
if not return_dict:
|
1363 |
+
return (image,)
|
1364 |
+
|
1365 |
+
return StableDiffusionXLPipelineOutput(images=image)
|
kolors/pipelines/pipeline_stable_diffusion_xl_chatglm_256_inpainting.py
ADDED
@@ -0,0 +1,1790 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import inspect
|
16 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
17 |
+
|
18 |
+
import numpy as np
|
19 |
+
import PIL.Image
|
20 |
+
import torch
|
21 |
+
from transformers import (
|
22 |
+
CLIPImageProcessor,
|
23 |
+
CLIPTextModel,
|
24 |
+
CLIPTextModelWithProjection,
|
25 |
+
CLIPTokenizer,
|
26 |
+
CLIPVisionModelWithProjection,
|
27 |
+
)
|
28 |
+
|
29 |
+
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
|
30 |
+
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
31 |
+
from diffusers.loaders import (
|
32 |
+
FromSingleFileMixin,
|
33 |
+
IPAdapterMixin,
|
34 |
+
StableDiffusionXLLoraLoaderMixin,
|
35 |
+
TextualInversionLoaderMixin,
|
36 |
+
)
|
37 |
+
from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
|
38 |
+
from diffusers.models.attention_processor import (
|
39 |
+
AttnProcessor2_0,
|
40 |
+
LoRAAttnProcessor2_0,
|
41 |
+
LoRAXFormersAttnProcessor,
|
42 |
+
XFormersAttnProcessor,
|
43 |
+
)
|
44 |
+
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
45 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
46 |
+
from diffusers.utils import (
|
47 |
+
USE_PEFT_BACKEND,
|
48 |
+
deprecate,
|
49 |
+
is_invisible_watermark_available,
|
50 |
+
is_torch_xla_available,
|
51 |
+
logging,
|
52 |
+
replace_example_docstring,
|
53 |
+
scale_lora_layers,
|
54 |
+
unscale_lora_layers,
|
55 |
+
)
|
56 |
+
from diffusers.utils.torch_utils import randn_tensor
|
57 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
58 |
+
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
|
59 |
+
|
60 |
+
|
61 |
+
if is_invisible_watermark_available():
|
62 |
+
from .watermark import StableDiffusionXLWatermarker
|
63 |
+
|
64 |
+
if is_torch_xla_available():
|
65 |
+
import torch_xla.core.xla_model as xm
|
66 |
+
|
67 |
+
XLA_AVAILABLE = True
|
68 |
+
else:
|
69 |
+
XLA_AVAILABLE = False
|
70 |
+
|
71 |
+
|
72 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
73 |
+
|
74 |
+
|
75 |
+
EXAMPLE_DOC_STRING = """
|
76 |
+
Examples:
|
77 |
+
```py
|
78 |
+
>>> import torch
|
79 |
+
>>> from diffusers import StableDiffusionXLInpaintPipeline
|
80 |
+
>>> from diffusers.utils import load_image
|
81 |
+
|
82 |
+
>>> pipe = StableDiffusionXLInpaintPipeline.from_pretrained(
|
83 |
+
... "stabilityai/stable-diffusion-xl-base-1.0",
|
84 |
+
... torch_dtype=torch.float16,
|
85 |
+
... variant="fp16",
|
86 |
+
... use_safetensors=True,
|
87 |
+
... )
|
88 |
+
>>> pipe.to("cuda")
|
89 |
+
|
90 |
+
>>> img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
|
91 |
+
>>> mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
|
92 |
+
|
93 |
+
>>> init_image = load_image(img_url).convert("RGB")
|
94 |
+
>>> mask_image = load_image(mask_url).convert("RGB")
|
95 |
+
|
96 |
+
>>> prompt = "A majestic tiger sitting on a bench"
|
97 |
+
>>> image = pipe(
|
98 |
+
... prompt=prompt, image=init_image, mask_image=mask_image, num_inference_steps=50, strength=0.80
|
99 |
+
... ).images[0]
|
100 |
+
```
|
101 |
+
"""
|
102 |
+
|
103 |
+
|
104 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
|
105 |
+
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
106 |
+
"""
|
107 |
+
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
108 |
+
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
|
109 |
+
"""
|
110 |
+
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
111 |
+
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
112 |
+
# rescale the results from guidance (fixes overexposure)
|
113 |
+
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
114 |
+
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
|
115 |
+
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
|
116 |
+
return noise_cfg
|
117 |
+
|
118 |
+
|
119 |
+
def mask_pil_to_torch(mask, height, width):
|
120 |
+
# preprocess mask
|
121 |
+
if isinstance(mask, (PIL.Image.Image, np.ndarray)):
|
122 |
+
mask = [mask]
|
123 |
+
|
124 |
+
if isinstance(mask, list) and isinstance(mask[0], PIL.Image.Image):
|
125 |
+
mask = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in mask]
|
126 |
+
mask = np.concatenate([np.array(m.convert("L"))[None, None, :] for m in mask], axis=0)
|
127 |
+
mask = mask.astype(np.float32) / 255.0
|
128 |
+
elif isinstance(mask, list) and isinstance(mask[0], np.ndarray):
|
129 |
+
mask = np.concatenate([m[None, None, :] for m in mask], axis=0)
|
130 |
+
|
131 |
+
mask = torch.from_numpy(mask)
|
132 |
+
return mask
|
133 |
+
|
134 |
+
|
135 |
+
def prepare_mask_and_masked_image(image, mask, height, width, return_image: bool = False):
|
136 |
+
"""
|
137 |
+
Prepares a pair (image, mask) to be consumed by the Stable Diffusion pipeline. This means that those inputs will be
|
138 |
+
converted to ``torch.Tensor`` with shapes ``batch x channels x height x width`` where ``channels`` is ``3`` for the
|
139 |
+
``image`` and ``1`` for the ``mask``.
|
140 |
+
|
141 |
+
The ``image`` will be converted to ``torch.float32`` and normalized to be in ``[-1, 1]``. The ``mask`` will be
|
142 |
+
binarized (``mask > 0.5``) and cast to ``torch.float32`` too.
|
143 |
+
|
144 |
+
Args:
|
145 |
+
image (Union[np.array, PIL.Image, torch.Tensor]): The image to inpaint.
|
146 |
+
It can be a ``PIL.Image``, or a ``height x width x 3`` ``np.array`` or a ``channels x height x width``
|
147 |
+
``torch.Tensor`` or a ``batch x channels x height x width`` ``torch.Tensor``.
|
148 |
+
mask (_type_): The mask to apply to the image, i.e. regions to inpaint.
|
149 |
+
It can be a ``PIL.Image``, or a ``height x width`` ``np.array`` or a ``1 x height x width``
|
150 |
+
``torch.Tensor`` or a ``batch x 1 x height x width`` ``torch.Tensor``.
|
151 |
+
|
152 |
+
|
153 |
+
Raises:
|
154 |
+
ValueError: ``torch.Tensor`` images should be in the ``[-1, 1]`` range. ValueError: ``torch.Tensor`` mask
|
155 |
+
should be in the ``[0, 1]`` range. ValueError: ``mask`` and ``image`` should have the same spatial dimensions.
|
156 |
+
TypeError: ``mask`` is a ``torch.Tensor`` but ``image`` is not
|
157 |
+
(ot the other way around).
|
158 |
+
|
159 |
+
Returns:
|
160 |
+
tuple[torch.Tensor]: The pair (mask, masked_image) as ``torch.Tensor`` with 4
|
161 |
+
dimensions: ``batch x channels x height x width``.
|
162 |
+
"""
|
163 |
+
|
164 |
+
# checkpoint. TOD(Yiyi) - need to clean this up later
|
165 |
+
deprecation_message = "The prepare_mask_and_masked_image method is deprecated and will be removed in a future version. Please use VaeImageProcessor.preprocess instead"
|
166 |
+
deprecate(
|
167 |
+
"prepare_mask_and_masked_image",
|
168 |
+
"0.30.0",
|
169 |
+
deprecation_message,
|
170 |
+
)
|
171 |
+
if image is None:
|
172 |
+
raise ValueError("`image` input cannot be undefined.")
|
173 |
+
|
174 |
+
if mask is None:
|
175 |
+
raise ValueError("`mask_image` input cannot be undefined.")
|
176 |
+
|
177 |
+
if isinstance(image, torch.Tensor):
|
178 |
+
if not isinstance(mask, torch.Tensor):
|
179 |
+
mask = mask_pil_to_torch(mask, height, width)
|
180 |
+
|
181 |
+
if image.ndim == 3:
|
182 |
+
image = image.unsqueeze(0)
|
183 |
+
|
184 |
+
# Batch and add channel dim for single mask
|
185 |
+
if mask.ndim == 2:
|
186 |
+
mask = mask.unsqueeze(0).unsqueeze(0)
|
187 |
+
|
188 |
+
# Batch single mask or add channel dim
|
189 |
+
if mask.ndim == 3:
|
190 |
+
# Single batched mask, no channel dim or single mask not batched but channel dim
|
191 |
+
if mask.shape[0] == 1:
|
192 |
+
mask = mask.unsqueeze(0)
|
193 |
+
|
194 |
+
# Batched masks no channel dim
|
195 |
+
else:
|
196 |
+
mask = mask.unsqueeze(1)
|
197 |
+
|
198 |
+
assert image.ndim == 4 and mask.ndim == 4, "Image and Mask must have 4 dimensions"
|
199 |
+
# assert image.shape[-2:] == mask.shape[-2:], "Image and Mask must have the same spatial dimensions"
|
200 |
+
assert image.shape[0] == mask.shape[0], "Image and Mask must have the same batch size"
|
201 |
+
|
202 |
+
# Check image is in [-1, 1]
|
203 |
+
# if image.min() < -1 or image.max() > 1:
|
204 |
+
# raise ValueError("Image should be in [-1, 1] range")
|
205 |
+
|
206 |
+
# Check mask is in [0, 1]
|
207 |
+
if mask.min() < 0 or mask.max() > 1:
|
208 |
+
raise ValueError("Mask should be in [0, 1] range")
|
209 |
+
|
210 |
+
# Binarize mask
|
211 |
+
mask[mask < 0.5] = 0
|
212 |
+
mask[mask >= 0.5] = 1
|
213 |
+
|
214 |
+
# Image as float32
|
215 |
+
image = image.to(dtype=torch.float32)
|
216 |
+
elif isinstance(mask, torch.Tensor):
|
217 |
+
raise TypeError(f"`mask` is a torch.Tensor but `image` (type: {type(image)} is not")
|
218 |
+
else:
|
219 |
+
# preprocess image
|
220 |
+
if isinstance(image, (PIL.Image.Image, np.ndarray)):
|
221 |
+
image = [image]
|
222 |
+
if isinstance(image, list) and isinstance(image[0], PIL.Image.Image):
|
223 |
+
# resize all images w.r.t passed height an width
|
224 |
+
image = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in image]
|
225 |
+
image = [np.array(i.convert("RGB"))[None, :] for i in image]
|
226 |
+
image = np.concatenate(image, axis=0)
|
227 |
+
elif isinstance(image, list) and isinstance(image[0], np.ndarray):
|
228 |
+
image = np.concatenate([i[None, :] for i in image], axis=0)
|
229 |
+
|
230 |
+
image = image.transpose(0, 3, 1, 2)
|
231 |
+
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
|
232 |
+
|
233 |
+
mask = mask_pil_to_torch(mask, height, width)
|
234 |
+
mask[mask < 0.5] = 0
|
235 |
+
mask[mask >= 0.5] = 1
|
236 |
+
|
237 |
+
if image.shape[1] == 4:
|
238 |
+
# images are in latent space and thus can't
|
239 |
+
# be masked set masked_image to None
|
240 |
+
# we assume that the checkpoint is not an inpainting
|
241 |
+
# checkpoint. TOD(Yiyi) - need to clean this up later
|
242 |
+
masked_image = None
|
243 |
+
else:
|
244 |
+
masked_image = image * (mask < 0.5)
|
245 |
+
|
246 |
+
# n.b. ensure backwards compatibility as old function does not return image
|
247 |
+
if return_image:
|
248 |
+
return mask, masked_image, image
|
249 |
+
|
250 |
+
return mask, masked_image
|
251 |
+
|
252 |
+
|
253 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
254 |
+
def retrieve_latents(
|
255 |
+
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
|
256 |
+
):
|
257 |
+
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
|
258 |
+
return encoder_output.latent_dist.sample(generator)
|
259 |
+
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
|
260 |
+
return encoder_output.latent_dist.mode()
|
261 |
+
elif hasattr(encoder_output, "latents"):
|
262 |
+
return encoder_output.latents
|
263 |
+
else:
|
264 |
+
raise AttributeError("Could not access latents of provided encoder_output")
|
265 |
+
|
266 |
+
|
267 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
268 |
+
def retrieve_timesteps(
|
269 |
+
scheduler,
|
270 |
+
num_inference_steps: Optional[int] = None,
|
271 |
+
device: Optional[Union[str, torch.device]] = None,
|
272 |
+
timesteps: Optional[List[int]] = None,
|
273 |
+
sigmas: Optional[List[float]] = None,
|
274 |
+
**kwargs,
|
275 |
+
):
|
276 |
+
"""
|
277 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
278 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
279 |
+
|
280 |
+
Args:
|
281 |
+
scheduler (`SchedulerMixin`):
|
282 |
+
The scheduler to get timesteps from.
|
283 |
+
num_inference_steps (`int`):
|
284 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
285 |
+
must be `None`.
|
286 |
+
device (`str` or `torch.device`, *optional*):
|
287 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
288 |
+
timesteps (`List[int]`, *optional*):
|
289 |
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
290 |
+
`num_inference_steps` and `sigmas` must be `None`.
|
291 |
+
sigmas (`List[float]`, *optional*):
|
292 |
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
293 |
+
`num_inference_steps` and `timesteps` must be `None`.
|
294 |
+
|
295 |
+
Returns:
|
296 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
297 |
+
second element is the number of inference steps.
|
298 |
+
"""
|
299 |
+
if timesteps is not None and sigmas is not None:
|
300 |
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
301 |
+
if timesteps is not None:
|
302 |
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
303 |
+
if not accepts_timesteps:
|
304 |
+
raise ValueError(
|
305 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
306 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
307 |
+
)
|
308 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
309 |
+
timesteps = scheduler.timesteps
|
310 |
+
num_inference_steps = len(timesteps)
|
311 |
+
elif sigmas is not None:
|
312 |
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
313 |
+
if not accept_sigmas:
|
314 |
+
raise ValueError(
|
315 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
316 |
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
317 |
+
)
|
318 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
319 |
+
timesteps = scheduler.timesteps
|
320 |
+
num_inference_steps = len(timesteps)
|
321 |
+
else:
|
322 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
323 |
+
timesteps = scheduler.timesteps
|
324 |
+
return timesteps, num_inference_steps
|
325 |
+
|
326 |
+
|
327 |
+
class StableDiffusionXLInpaintPipeline(
|
328 |
+
DiffusionPipeline,
|
329 |
+
StableDiffusionMixin,
|
330 |
+
TextualInversionLoaderMixin,
|
331 |
+
StableDiffusionXLLoraLoaderMixin,
|
332 |
+
FromSingleFileMixin,
|
333 |
+
IPAdapterMixin,
|
334 |
+
):
|
335 |
+
r"""
|
336 |
+
Pipeline for text-to-image generation using Stable Diffusion XL.
|
337 |
+
|
338 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
339 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
340 |
+
|
341 |
+
The pipeline also inherits the following loading methods:
|
342 |
+
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
343 |
+
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
344 |
+
- [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
345 |
+
- [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
346 |
+
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
347 |
+
|
348 |
+
Args:
|
349 |
+
vae ([`AutoencoderKL`]):
|
350 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
351 |
+
text_encoder ([`CLIPTextModel`]):
|
352 |
+
Frozen text-encoder. Stable Diffusion XL uses the text portion of
|
353 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
354 |
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
355 |
+
text_encoder_2 ([` CLIPTextModelWithProjection`]):
|
356 |
+
Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of
|
357 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
|
358 |
+
specifically the
|
359 |
+
[laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
|
360 |
+
variant.
|
361 |
+
tokenizer (`CLIPTokenizer`):
|
362 |
+
Tokenizer of class
|
363 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
364 |
+
tokenizer_2 (`CLIPTokenizer`):
|
365 |
+
Second Tokenizer of class
|
366 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
367 |
+
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
368 |
+
scheduler ([`SchedulerMixin`]):
|
369 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
370 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
371 |
+
requires_aesthetics_score (`bool`, *optional*, defaults to `"False"`):
|
372 |
+
Whether the `unet` requires a aesthetic_score condition to be passed during inference. Also see the config
|
373 |
+
of `stabilityai/stable-diffusion-xl-refiner-1-0`.
|
374 |
+
force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`):
|
375 |
+
Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of
|
376 |
+
`stabilityai/stable-diffusion-xl-base-1-0`.
|
377 |
+
add_watermarker (`bool`, *optional*):
|
378 |
+
Whether to use the [invisible_watermark library](https://github.com/ShieldMnt/invisible-watermark/) to
|
379 |
+
watermark output images. If not defined, it will default to True if the package is installed, otherwise no
|
380 |
+
watermarker will be used.
|
381 |
+
"""
|
382 |
+
|
383 |
+
model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->unet->vae"
|
384 |
+
|
385 |
+
_optional_components = [
|
386 |
+
"tokenizer",
|
387 |
+
"tokenizer_2",
|
388 |
+
"text_encoder",
|
389 |
+
"text_encoder_2",
|
390 |
+
"image_encoder",
|
391 |
+
"feature_extractor",
|
392 |
+
]
|
393 |
+
_callback_tensor_inputs = [
|
394 |
+
"latents",
|
395 |
+
"prompt_embeds",
|
396 |
+
"negative_prompt_embeds",
|
397 |
+
"add_text_embeds",
|
398 |
+
"add_time_ids",
|
399 |
+
"negative_pooled_prompt_embeds",
|
400 |
+
"add_neg_time_ids",
|
401 |
+
"mask",
|
402 |
+
"masked_image_latents",
|
403 |
+
]
|
404 |
+
|
405 |
+
def __init__(
|
406 |
+
self,
|
407 |
+
vae: AutoencoderKL,
|
408 |
+
text_encoder: CLIPTextModel,
|
409 |
+
tokenizer: CLIPTokenizer,
|
410 |
+
unet: UNet2DConditionModel,
|
411 |
+
scheduler: KarrasDiffusionSchedulers,
|
412 |
+
tokenizer_2: CLIPTokenizer = None,
|
413 |
+
text_encoder_2: CLIPTextModelWithProjection = None,
|
414 |
+
image_encoder: CLIPVisionModelWithProjection = None,
|
415 |
+
feature_extractor: CLIPImageProcessor = None,
|
416 |
+
requires_aesthetics_score: bool = False,
|
417 |
+
force_zeros_for_empty_prompt: bool = True,
|
418 |
+
add_watermarker: Optional[bool] = None,
|
419 |
+
):
|
420 |
+
super().__init__()
|
421 |
+
|
422 |
+
self.register_modules(
|
423 |
+
vae=vae,
|
424 |
+
text_encoder=text_encoder,
|
425 |
+
text_encoder_2=text_encoder_2,
|
426 |
+
tokenizer=tokenizer,
|
427 |
+
tokenizer_2=tokenizer_2,
|
428 |
+
unet=unet,
|
429 |
+
image_encoder=image_encoder,
|
430 |
+
feature_extractor=feature_extractor,
|
431 |
+
scheduler=scheduler,
|
432 |
+
)
|
433 |
+
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
|
434 |
+
self.register_to_config(requires_aesthetics_score=requires_aesthetics_score)
|
435 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
436 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
437 |
+
self.mask_processor = VaeImageProcessor(
|
438 |
+
vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True
|
439 |
+
)
|
440 |
+
|
441 |
+
add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available()
|
442 |
+
|
443 |
+
if add_watermarker:
|
444 |
+
self.watermark = StableDiffusionXLWatermarker()
|
445 |
+
else:
|
446 |
+
self.watermark = None
|
447 |
+
|
448 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
|
449 |
+
def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
|
450 |
+
dtype = next(self.image_encoder.parameters()).dtype
|
451 |
+
|
452 |
+
if not isinstance(image, torch.Tensor):
|
453 |
+
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
454 |
+
|
455 |
+
image = image.to(device=device, dtype=dtype)
|
456 |
+
if output_hidden_states:
|
457 |
+
image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
|
458 |
+
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
|
459 |
+
uncond_image_enc_hidden_states = self.image_encoder(
|
460 |
+
torch.zeros_like(image), output_hidden_states=True
|
461 |
+
).hidden_states[-2]
|
462 |
+
uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
|
463 |
+
num_images_per_prompt, dim=0
|
464 |
+
)
|
465 |
+
return image_enc_hidden_states, uncond_image_enc_hidden_states
|
466 |
+
else:
|
467 |
+
image_embeds = self.image_encoder(image).image_embeds
|
468 |
+
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
469 |
+
uncond_image_embeds = torch.zeros_like(image_embeds)
|
470 |
+
|
471 |
+
return image_embeds, uncond_image_embeds
|
472 |
+
|
473 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
|
474 |
+
def prepare_ip_adapter_image_embeds(
|
475 |
+
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
|
476 |
+
):
|
477 |
+
if ip_adapter_image_embeds is None:
|
478 |
+
if not isinstance(ip_adapter_image, list):
|
479 |
+
ip_adapter_image = [ip_adapter_image]
|
480 |
+
|
481 |
+
if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
|
482 |
+
raise ValueError(
|
483 |
+
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
|
484 |
+
)
|
485 |
+
|
486 |
+
image_embeds = []
|
487 |
+
for single_ip_adapter_image, image_proj_layer in zip(
|
488 |
+
ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
|
489 |
+
):
|
490 |
+
output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
|
491 |
+
single_image_embeds, single_negative_image_embeds = self.encode_image(
|
492 |
+
single_ip_adapter_image, device, 1, output_hidden_state
|
493 |
+
)
|
494 |
+
single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
|
495 |
+
single_negative_image_embeds = torch.stack(
|
496 |
+
[single_negative_image_embeds] * num_images_per_prompt, dim=0
|
497 |
+
)
|
498 |
+
|
499 |
+
if do_classifier_free_guidance:
|
500 |
+
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
|
501 |
+
single_image_embeds = single_image_embeds.to(device)
|
502 |
+
|
503 |
+
image_embeds.append(single_image_embeds)
|
504 |
+
else:
|
505 |
+
repeat_dims = [1]
|
506 |
+
image_embeds = []
|
507 |
+
for single_image_embeds in ip_adapter_image_embeds:
|
508 |
+
if do_classifier_free_guidance:
|
509 |
+
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
|
510 |
+
single_image_embeds = single_image_embeds.repeat(
|
511 |
+
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
512 |
+
)
|
513 |
+
single_negative_image_embeds = single_negative_image_embeds.repeat(
|
514 |
+
num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:]))
|
515 |
+
)
|
516 |
+
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
|
517 |
+
else:
|
518 |
+
single_image_embeds = single_image_embeds.repeat(
|
519 |
+
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
520 |
+
)
|
521 |
+
image_embeds.append(single_image_embeds)
|
522 |
+
|
523 |
+
return image_embeds
|
524 |
+
|
525 |
+
def encode_prompt(
|
526 |
+
self,
|
527 |
+
prompt,
|
528 |
+
device: Optional[torch.device] = None,
|
529 |
+
num_images_per_prompt: int = 1,
|
530 |
+
do_classifier_free_guidance: bool = True,
|
531 |
+
negative_prompt=None,
|
532 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
533 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
534 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
535 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
536 |
+
lora_scale: Optional[float] = None,
|
537 |
+
):
|
538 |
+
r"""
|
539 |
+
Encodes the prompt into text encoder hidden states.
|
540 |
+
|
541 |
+
Args:
|
542 |
+
prompt (`str` or `List[str]`, *optional*):
|
543 |
+
prompt to be encoded
|
544 |
+
device: (`torch.device`):
|
545 |
+
torch device
|
546 |
+
num_images_per_prompt (`int`):
|
547 |
+
number of images that should be generated per prompt
|
548 |
+
do_classifier_free_guidance (`bool`):
|
549 |
+
whether to use classifier free guidance or not
|
550 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
551 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
552 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
553 |
+
less than `1`).
|
554 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
555 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
556 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
557 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
558 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
559 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
560 |
+
argument.
|
561 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
562 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
563 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
564 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
565 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
566 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
567 |
+
input argument.
|
568 |
+
lora_scale (`float`, *optional*):
|
569 |
+
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
570 |
+
"""
|
571 |
+
# from IPython import embed; embed(); exit()
|
572 |
+
device = device or self._execution_device
|
573 |
+
|
574 |
+
# set lora scale so that monkey patched LoRA
|
575 |
+
# function of text encoder can correctly access it
|
576 |
+
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
|
577 |
+
self._lora_scale = lora_scale
|
578 |
+
|
579 |
+
if prompt is not None and isinstance(prompt, str):
|
580 |
+
batch_size = 1
|
581 |
+
elif prompt is not None and isinstance(prompt, list):
|
582 |
+
batch_size = len(prompt)
|
583 |
+
else:
|
584 |
+
batch_size = prompt_embeds.shape[0]
|
585 |
+
|
586 |
+
# Define tokenizers and text encoders
|
587 |
+
tokenizers = [self.tokenizer]
|
588 |
+
text_encoders = [self.text_encoder]
|
589 |
+
|
590 |
+
if prompt_embeds is None:
|
591 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
592 |
+
prompt_embeds_list = []
|
593 |
+
for tokenizer, text_encoder in zip(tokenizers, text_encoders):
|
594 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
595 |
+
prompt = self.maybe_convert_prompt(prompt, tokenizer)
|
596 |
+
|
597 |
+
text_inputs = tokenizer(
|
598 |
+
prompt,
|
599 |
+
padding="max_length",
|
600 |
+
max_length=256,
|
601 |
+
truncation=True,
|
602 |
+
return_tensors="pt",
|
603 |
+
).to('cuda')
|
604 |
+
output = text_encoder(
|
605 |
+
input_ids=text_inputs['input_ids'] ,
|
606 |
+
attention_mask=text_inputs['attention_mask'],
|
607 |
+
position_ids=text_inputs['position_ids'],
|
608 |
+
output_hidden_states=True)
|
609 |
+
prompt_embeds = output.hidden_states[-2].permute(1, 0, 2).clone()
|
610 |
+
text_proj = output.hidden_states[-1][-1, :, :].clone()
|
611 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
612 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
613 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
614 |
+
prompt_embeds_list.append(prompt_embeds)
|
615 |
+
|
616 |
+
prompt_embeds = prompt_embeds_list[0]
|
617 |
+
|
618 |
+
# get unconditional embeddings for classifier free guidance
|
619 |
+
zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
|
620 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
|
621 |
+
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
|
622 |
+
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
|
623 |
+
elif do_classifier_free_guidance and negative_prompt_embeds is None:
|
624 |
+
# negative_prompt = negative_prompt or ""
|
625 |
+
uncond_tokens: List[str]
|
626 |
+
if negative_prompt is None:
|
627 |
+
uncond_tokens = [""] * batch_size
|
628 |
+
elif prompt is not None and type(prompt) is not type(negative_prompt):
|
629 |
+
raise TypeError(
|
630 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
631 |
+
f" {type(prompt)}."
|
632 |
+
)
|
633 |
+
elif isinstance(negative_prompt, str):
|
634 |
+
uncond_tokens = [negative_prompt]
|
635 |
+
elif batch_size != len(negative_prompt):
|
636 |
+
raise ValueError(
|
637 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
638 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
639 |
+
" the batch size of `prompt`."
|
640 |
+
)
|
641 |
+
else:
|
642 |
+
uncond_tokens = negative_prompt
|
643 |
+
|
644 |
+
negative_prompt_embeds_list = []
|
645 |
+
for tokenizer, text_encoder in zip(tokenizers, text_encoders):
|
646 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
647 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
648 |
+
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, tokenizer)
|
649 |
+
|
650 |
+
max_length = prompt_embeds.shape[1]
|
651 |
+
uncond_input = tokenizer(
|
652 |
+
uncond_tokens,
|
653 |
+
padding="max_length",
|
654 |
+
max_length=max_length,
|
655 |
+
truncation=True,
|
656 |
+
return_tensors="pt",
|
657 |
+
).to('cuda')
|
658 |
+
output = text_encoder(
|
659 |
+
input_ids=uncond_input['input_ids'] ,
|
660 |
+
attention_mask=uncond_input['attention_mask'],
|
661 |
+
position_ids=uncond_input['position_ids'],
|
662 |
+
output_hidden_states=True)
|
663 |
+
negative_prompt_embeds = output.hidden_states[-2].permute(1, 0, 2).clone()
|
664 |
+
negative_text_proj = output.hidden_states[-1][-1, :, :].clone()
|
665 |
+
|
666 |
+
if do_classifier_free_guidance:
|
667 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
668 |
+
seq_len = negative_prompt_embeds.shape[1]
|
669 |
+
|
670 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=text_encoder.dtype, device=device)
|
671 |
+
|
672 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
673 |
+
negative_prompt_embeds = negative_prompt_embeds.view(
|
674 |
+
batch_size * num_images_per_prompt, seq_len, -1
|
675 |
+
)
|
676 |
+
|
677 |
+
# For classifier free guidance, we need to do two forward passes.
|
678 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
679 |
+
# to avoid doing two forward passes
|
680 |
+
|
681 |
+
negative_prompt_embeds_list.append(negative_prompt_embeds)
|
682 |
+
|
683 |
+
negative_prompt_embeds = negative_prompt_embeds_list[0]
|
684 |
+
|
685 |
+
bs_embed = text_proj.shape[0]
|
686 |
+
text_proj = text_proj.repeat(1, num_images_per_prompt).view(
|
687 |
+
bs_embed * num_images_per_prompt, -1
|
688 |
+
)
|
689 |
+
negative_text_proj = negative_text_proj.repeat(1, num_images_per_prompt).view(
|
690 |
+
bs_embed * num_images_per_prompt, -1
|
691 |
+
)
|
692 |
+
|
693 |
+
return prompt_embeds, negative_prompt_embeds, text_proj, negative_text_proj
|
694 |
+
|
695 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
696 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
697 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
698 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
699 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
700 |
+
# and should be between [0, 1]
|
701 |
+
|
702 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
703 |
+
extra_step_kwargs = {}
|
704 |
+
if accepts_eta:
|
705 |
+
extra_step_kwargs["eta"] = eta
|
706 |
+
|
707 |
+
# check if the scheduler accepts generator
|
708 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
709 |
+
if accepts_generator:
|
710 |
+
extra_step_kwargs["generator"] = generator
|
711 |
+
return extra_step_kwargs
|
712 |
+
|
713 |
+
def check_inputs(
|
714 |
+
self,
|
715 |
+
prompt,
|
716 |
+
prompt_2,
|
717 |
+
image,
|
718 |
+
mask_image,
|
719 |
+
height,
|
720 |
+
width,
|
721 |
+
strength,
|
722 |
+
callback_steps,
|
723 |
+
output_type,
|
724 |
+
negative_prompt=None,
|
725 |
+
negative_prompt_2=None,
|
726 |
+
prompt_embeds=None,
|
727 |
+
negative_prompt_embeds=None,
|
728 |
+
ip_adapter_image=None,
|
729 |
+
ip_adapter_image_embeds=None,
|
730 |
+
callback_on_step_end_tensor_inputs=None,
|
731 |
+
padding_mask_crop=None,
|
732 |
+
):
|
733 |
+
if strength < 0 or strength > 1:
|
734 |
+
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
|
735 |
+
|
736 |
+
if height % 8 != 0 or width % 8 != 0:
|
737 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
738 |
+
|
739 |
+
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
|
740 |
+
raise ValueError(
|
741 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
742 |
+
f" {type(callback_steps)}."
|
743 |
+
)
|
744 |
+
|
745 |
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
746 |
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
747 |
+
):
|
748 |
+
raise ValueError(
|
749 |
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
750 |
+
)
|
751 |
+
|
752 |
+
if prompt is not None and prompt_embeds is not None:
|
753 |
+
raise ValueError(
|
754 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
755 |
+
" only forward one of the two."
|
756 |
+
)
|
757 |
+
elif prompt_2 is not None and prompt_embeds is not None:
|
758 |
+
raise ValueError(
|
759 |
+
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
760 |
+
" only forward one of the two."
|
761 |
+
)
|
762 |
+
elif prompt is None and prompt_embeds is None:
|
763 |
+
raise ValueError(
|
764 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
765 |
+
)
|
766 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
767 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
768 |
+
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
|
769 |
+
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
|
770 |
+
|
771 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
772 |
+
raise ValueError(
|
773 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
774 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
775 |
+
)
|
776 |
+
elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
|
777 |
+
raise ValueError(
|
778 |
+
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
|
779 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
780 |
+
)
|
781 |
+
|
782 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
783 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
784 |
+
raise ValueError(
|
785 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
786 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
787 |
+
f" {negative_prompt_embeds.shape}."
|
788 |
+
)
|
789 |
+
if padding_mask_crop is not None:
|
790 |
+
if not isinstance(image, PIL.Image.Image):
|
791 |
+
raise ValueError(
|
792 |
+
f"The image should be a PIL image when inpainting mask crop, but is of type" f" {type(image)}."
|
793 |
+
)
|
794 |
+
if not isinstance(mask_image, PIL.Image.Image):
|
795 |
+
raise ValueError(
|
796 |
+
f"The mask image should be a PIL image when inpainting mask crop, but is of type"
|
797 |
+
f" {type(mask_image)}."
|
798 |
+
)
|
799 |
+
if output_type != "pil":
|
800 |
+
raise ValueError(f"The output type should be PIL when inpainting mask crop, but is" f" {output_type}.")
|
801 |
+
|
802 |
+
if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
|
803 |
+
raise ValueError(
|
804 |
+
"Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
|
805 |
+
)
|
806 |
+
|
807 |
+
if ip_adapter_image_embeds is not None:
|
808 |
+
if not isinstance(ip_adapter_image_embeds, list):
|
809 |
+
raise ValueError(
|
810 |
+
f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
|
811 |
+
)
|
812 |
+
elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
|
813 |
+
raise ValueError(
|
814 |
+
f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
|
815 |
+
)
|
816 |
+
|
817 |
+
def prepare_latents(
|
818 |
+
self,
|
819 |
+
batch_size,
|
820 |
+
num_channels_latents,
|
821 |
+
height,
|
822 |
+
width,
|
823 |
+
dtype,
|
824 |
+
device,
|
825 |
+
generator,
|
826 |
+
latents=None,
|
827 |
+
image=None,
|
828 |
+
timestep=None,
|
829 |
+
is_strength_max=True,
|
830 |
+
add_noise=True,
|
831 |
+
return_noise=False,
|
832 |
+
return_image_latents=False,
|
833 |
+
):
|
834 |
+
shape = (
|
835 |
+
batch_size,
|
836 |
+
num_channels_latents,
|
837 |
+
int(height) // self.vae_scale_factor,
|
838 |
+
int(width) // self.vae_scale_factor,
|
839 |
+
)
|
840 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
841 |
+
raise ValueError(
|
842 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
843 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
844 |
+
)
|
845 |
+
|
846 |
+
if (image is None or timestep is None) and not is_strength_max:
|
847 |
+
raise ValueError(
|
848 |
+
"Since strength < 1. initial latents are to be initialised as a combination of Image + Noise."
|
849 |
+
"However, either the image or the noise timestep has not been provided."
|
850 |
+
)
|
851 |
+
|
852 |
+
if image.shape[1] == 4:
|
853 |
+
image_latents = image.to(device=device, dtype=dtype)
|
854 |
+
image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1)
|
855 |
+
elif return_image_latents or (latents is None and not is_strength_max):
|
856 |
+
image = image.to(device=device, dtype=dtype)
|
857 |
+
image_latents = self._encode_vae_image(image=image, generator=generator)
|
858 |
+
image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1)
|
859 |
+
|
860 |
+
if latents is None and add_noise:
|
861 |
+
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
862 |
+
# if strength is 1. then initialise the latents to noise, else initial to image + noise
|
863 |
+
latents = noise if is_strength_max else self.scheduler.add_noise(image_latents, noise, timestep)
|
864 |
+
# if pure noise then scale the initial latents by the Scheduler's init sigma
|
865 |
+
latents = latents * self.scheduler.init_noise_sigma if is_strength_max else latents
|
866 |
+
elif add_noise:
|
867 |
+
noise = latents.to(device)
|
868 |
+
latents = noise * self.scheduler.init_noise_sigma
|
869 |
+
else:
|
870 |
+
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
871 |
+
latents = image_latents.to(device)
|
872 |
+
|
873 |
+
outputs = (latents,)
|
874 |
+
|
875 |
+
if return_noise:
|
876 |
+
outputs += (noise,)
|
877 |
+
|
878 |
+
if return_image_latents:
|
879 |
+
outputs += (image_latents,)
|
880 |
+
|
881 |
+
return outputs
|
882 |
+
|
883 |
+
def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
|
884 |
+
dtype = image.dtype
|
885 |
+
if self.vae.config.force_upcast:
|
886 |
+
image = image.float()
|
887 |
+
self.vae.to(dtype=torch.float32)
|
888 |
+
|
889 |
+
if isinstance(generator, list):
|
890 |
+
image_latents = [
|
891 |
+
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
|
892 |
+
for i in range(image.shape[0])
|
893 |
+
]
|
894 |
+
image_latents = torch.cat(image_latents, dim=0)
|
895 |
+
else:
|
896 |
+
image_latents = retrieve_latents(self.vae.encode(image), generator=generator)
|
897 |
+
|
898 |
+
if self.vae.config.force_upcast:
|
899 |
+
self.vae.to(dtype)
|
900 |
+
|
901 |
+
image_latents = image_latents.to(dtype)
|
902 |
+
image_latents = self.vae.config.scaling_factor * image_latents
|
903 |
+
|
904 |
+
return image_latents
|
905 |
+
|
906 |
+
def prepare_mask_latents(
|
907 |
+
self, mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance
|
908 |
+
):
|
909 |
+
# resize the mask to latents shape as we concatenate the mask to the latents
|
910 |
+
# we do that before converting to dtype to avoid breaking in case we're using cpu_offload
|
911 |
+
# and half precision
|
912 |
+
mask = torch.nn.functional.interpolate(
|
913 |
+
mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)
|
914 |
+
)
|
915 |
+
mask = mask.to(device=device, dtype=dtype)
|
916 |
+
|
917 |
+
# duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
|
918 |
+
if mask.shape[0] < batch_size:
|
919 |
+
if not batch_size % mask.shape[0] == 0:
|
920 |
+
raise ValueError(
|
921 |
+
"The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
|
922 |
+
f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
|
923 |
+
" of masks that you pass is divisible by the total requested batch size."
|
924 |
+
)
|
925 |
+
mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
|
926 |
+
|
927 |
+
mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask
|
928 |
+
|
929 |
+
if masked_image is not None and masked_image.shape[1] == 4:
|
930 |
+
masked_image_latents = masked_image
|
931 |
+
else:
|
932 |
+
masked_image_latents = None
|
933 |
+
|
934 |
+
if masked_image is not None:
|
935 |
+
if masked_image_latents is None:
|
936 |
+
masked_image = masked_image.to(device=device, dtype=dtype)
|
937 |
+
masked_image_latents = self._encode_vae_image(masked_image, generator=generator)
|
938 |
+
|
939 |
+
if masked_image_latents.shape[0] < batch_size:
|
940 |
+
if not batch_size % masked_image_latents.shape[0] == 0:
|
941 |
+
raise ValueError(
|
942 |
+
"The passed images and the required batch size don't match. Images are supposed to be duplicated"
|
943 |
+
f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
|
944 |
+
" Make sure the number of images that you pass is divisible by the total requested batch size."
|
945 |
+
)
|
946 |
+
masked_image_latents = masked_image_latents.repeat(
|
947 |
+
batch_size // masked_image_latents.shape[0], 1, 1, 1
|
948 |
+
)
|
949 |
+
|
950 |
+
masked_image_latents = (
|
951 |
+
torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents
|
952 |
+
)
|
953 |
+
|
954 |
+
# aligning device to prevent device errors when concating it with the latent model input
|
955 |
+
masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
|
956 |
+
|
957 |
+
return mask, masked_image_latents
|
958 |
+
|
959 |
+
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img.StableDiffusionXLImg2ImgPipeline.get_timesteps
|
960 |
+
def get_timesteps(self, num_inference_steps, strength, device, denoising_start=None):
|
961 |
+
# get the original timestep using init_timestep
|
962 |
+
if denoising_start is None:
|
963 |
+
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
964 |
+
t_start = max(num_inference_steps - init_timestep, 0)
|
965 |
+
else:
|
966 |
+
t_start = 0
|
967 |
+
|
968 |
+
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
|
969 |
+
|
970 |
+
# Strength is irrelevant if we directly request a timestep to start at;
|
971 |
+
# that is, strength is determined by the denoising_start instead.
|
972 |
+
if denoising_start is not None:
|
973 |
+
discrete_timestep_cutoff = int(
|
974 |
+
round(
|
975 |
+
self.scheduler.config.num_train_timesteps
|
976 |
+
- (denoising_start * self.scheduler.config.num_train_timesteps)
|
977 |
+
)
|
978 |
+
)
|
979 |
+
|
980 |
+
num_inference_steps = (timesteps < discrete_timestep_cutoff).sum().item()
|
981 |
+
if self.scheduler.order == 2 and num_inference_steps % 2 == 0:
|
982 |
+
# if the scheduler is a 2nd order scheduler we might have to do +1
|
983 |
+
# because `num_inference_steps` might be even given that every timestep
|
984 |
+
# (except the highest one) is duplicated. If `num_inference_steps` is even it would
|
985 |
+
# mean that we cut the timesteps in the middle of the denoising step
|
986 |
+
# (between 1st and 2nd derivative) which leads to incorrect results. By adding 1
|
987 |
+
# we ensure that the denoising process always ends after the 2nd derivate step of the scheduler
|
988 |
+
num_inference_steps = num_inference_steps + 1
|
989 |
+
|
990 |
+
# because t_n+1 >= t_n, we slice the timesteps starting from the end
|
991 |
+
timesteps = timesteps[-num_inference_steps:]
|
992 |
+
return timesteps, num_inference_steps
|
993 |
+
|
994 |
+
return timesteps, num_inference_steps - t_start
|
995 |
+
|
996 |
+
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img.StableDiffusionXLImg2ImgPipeline._get_add_time_ids
|
997 |
+
def _get_add_time_ids(
|
998 |
+
self,
|
999 |
+
original_size,
|
1000 |
+
crops_coords_top_left,
|
1001 |
+
target_size,
|
1002 |
+
aesthetic_score,
|
1003 |
+
negative_aesthetic_score,
|
1004 |
+
negative_original_size,
|
1005 |
+
negative_crops_coords_top_left,
|
1006 |
+
negative_target_size,
|
1007 |
+
dtype,
|
1008 |
+
text_encoder_projection_dim=None,
|
1009 |
+
):
|
1010 |
+
if self.config.requires_aesthetics_score:
|
1011 |
+
add_time_ids = list(original_size + crops_coords_top_left + (aesthetic_score,))
|
1012 |
+
add_neg_time_ids = list(
|
1013 |
+
negative_original_size + negative_crops_coords_top_left + (negative_aesthetic_score,)
|
1014 |
+
)
|
1015 |
+
else:
|
1016 |
+
add_time_ids = list(original_size + crops_coords_top_left + target_size)
|
1017 |
+
add_neg_time_ids = list(negative_original_size + crops_coords_top_left + negative_target_size)
|
1018 |
+
|
1019 |
+
passed_add_embed_dim = (
|
1020 |
+
self.unet.config.addition_time_embed_dim * len(add_time_ids) + 4096
|
1021 |
+
)
|
1022 |
+
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
|
1023 |
+
|
1024 |
+
if (
|
1025 |
+
expected_add_embed_dim > passed_add_embed_dim
|
1026 |
+
and (expected_add_embed_dim - passed_add_embed_dim) == self.unet.config.addition_time_embed_dim
|
1027 |
+
):
|
1028 |
+
raise ValueError(
|
1029 |
+
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to enable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=True)` to make sure `aesthetic_score` {aesthetic_score} and `negative_aesthetic_score` {negative_aesthetic_score} is correctly used by the model."
|
1030 |
+
)
|
1031 |
+
elif (
|
1032 |
+
expected_add_embed_dim < passed_add_embed_dim
|
1033 |
+
and (passed_add_embed_dim - expected_add_embed_dim) == self.unet.config.addition_time_embed_dim
|
1034 |
+
):
|
1035 |
+
raise ValueError(
|
1036 |
+
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to disable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=False)` to make sure `target_size` {target_size} is correctly used by the model."
|
1037 |
+
)
|
1038 |
+
elif expected_add_embed_dim != passed_add_embed_dim:
|
1039 |
+
raise ValueError(
|
1040 |
+
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
|
1041 |
+
)
|
1042 |
+
|
1043 |
+
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
|
1044 |
+
add_neg_time_ids = torch.tensor([add_neg_time_ids], dtype=dtype)
|
1045 |
+
|
1046 |
+
return add_time_ids, add_neg_time_ids
|
1047 |
+
|
1048 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
|
1049 |
+
def upcast_vae(self):
|
1050 |
+
dtype = self.vae.dtype
|
1051 |
+
self.vae.to(dtype=torch.float32)
|
1052 |
+
use_torch_2_0_or_xformers = isinstance(
|
1053 |
+
self.vae.decoder.mid_block.attentions[0].processor,
|
1054 |
+
(
|
1055 |
+
AttnProcessor2_0,
|
1056 |
+
XFormersAttnProcessor,
|
1057 |
+
LoRAXFormersAttnProcessor,
|
1058 |
+
LoRAAttnProcessor2_0,
|
1059 |
+
),
|
1060 |
+
)
|
1061 |
+
# if xformers or torch_2_0 is used attention block does not need
|
1062 |
+
# to be in float32 which can save lots of memory
|
1063 |
+
if use_torch_2_0_or_xformers:
|
1064 |
+
self.vae.post_quant_conv.to(dtype)
|
1065 |
+
self.vae.decoder.conv_in.to(dtype)
|
1066 |
+
self.vae.decoder.mid_block.to(dtype)
|
1067 |
+
|
1068 |
+
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
1069 |
+
def get_guidance_scale_embedding(
|
1070 |
+
self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
|
1071 |
+
) -> torch.Tensor:
|
1072 |
+
"""
|
1073 |
+
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
1074 |
+
|
1075 |
+
Args:
|
1076 |
+
w (`torch.Tensor`):
|
1077 |
+
Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
|
1078 |
+
embedding_dim (`int`, *optional*, defaults to 512):
|
1079 |
+
Dimension of the embeddings to generate.
|
1080 |
+
dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
|
1081 |
+
Data type of the generated embeddings.
|
1082 |
+
|
1083 |
+
Returns:
|
1084 |
+
`torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
|
1085 |
+
"""
|
1086 |
+
assert len(w.shape) == 1
|
1087 |
+
w = w * 1000.0
|
1088 |
+
|
1089 |
+
half_dim = embedding_dim // 2
|
1090 |
+
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
|
1091 |
+
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
|
1092 |
+
emb = w.to(dtype)[:, None] * emb[None, :]
|
1093 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
1094 |
+
if embedding_dim % 2 == 1: # zero pad
|
1095 |
+
emb = torch.nn.functional.pad(emb, (0, 1))
|
1096 |
+
assert emb.shape == (w.shape[0], embedding_dim)
|
1097 |
+
return emb
|
1098 |
+
|
1099 |
+
@property
|
1100 |
+
def guidance_scale(self):
|
1101 |
+
return self._guidance_scale
|
1102 |
+
|
1103 |
+
@property
|
1104 |
+
def guidance_rescale(self):
|
1105 |
+
return self._guidance_rescale
|
1106 |
+
|
1107 |
+
@property
|
1108 |
+
def clip_skip(self):
|
1109 |
+
return self._clip_skip
|
1110 |
+
|
1111 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
1112 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
1113 |
+
# corresponds to doing no classifier free guidance.
|
1114 |
+
@property
|
1115 |
+
def do_classifier_free_guidance(self):
|
1116 |
+
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
|
1117 |
+
|
1118 |
+
@property
|
1119 |
+
def cross_attention_kwargs(self):
|
1120 |
+
return self._cross_attention_kwargs
|
1121 |
+
|
1122 |
+
@property
|
1123 |
+
def denoising_end(self):
|
1124 |
+
return self._denoising_end
|
1125 |
+
|
1126 |
+
@property
|
1127 |
+
def denoising_start(self):
|
1128 |
+
return self._denoising_start
|
1129 |
+
|
1130 |
+
@property
|
1131 |
+
def num_timesteps(self):
|
1132 |
+
return self._num_timesteps
|
1133 |
+
|
1134 |
+
@property
|
1135 |
+
def interrupt(self):
|
1136 |
+
return self._interrupt
|
1137 |
+
|
1138 |
+
@torch.no_grad()
|
1139 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
1140 |
+
def __call__(
|
1141 |
+
self,
|
1142 |
+
prompt: Union[str, List[str]] = None,
|
1143 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
1144 |
+
image: PipelineImageInput = None,
|
1145 |
+
mask_image: PipelineImageInput = None,
|
1146 |
+
masked_image_latents: torch.Tensor = None,
|
1147 |
+
height: Optional[int] = None,
|
1148 |
+
width: Optional[int] = None,
|
1149 |
+
padding_mask_crop: Optional[int] = None,
|
1150 |
+
strength: float = 0.9999,
|
1151 |
+
num_inference_steps: int = 50,
|
1152 |
+
timesteps: List[int] = None,
|
1153 |
+
sigmas: List[float] = None,
|
1154 |
+
denoising_start: Optional[float] = None,
|
1155 |
+
denoising_end: Optional[float] = None,
|
1156 |
+
guidance_scale: float = 7.5,
|
1157 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
1158 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
1159 |
+
num_images_per_prompt: Optional[int] = 1,
|
1160 |
+
eta: float = 0.0,
|
1161 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
1162 |
+
latents: Optional[torch.Tensor] = None,
|
1163 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
1164 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
1165 |
+
pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
1166 |
+
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
1167 |
+
ip_adapter_image: Optional[PipelineImageInput] = None,
|
1168 |
+
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
|
1169 |
+
output_type: Optional[str] = "pil",
|
1170 |
+
return_dict: bool = True,
|
1171 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
1172 |
+
guidance_rescale: float = 0.0,
|
1173 |
+
original_size: Tuple[int, int] = None,
|
1174 |
+
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
1175 |
+
target_size: Tuple[int, int] = None,
|
1176 |
+
negative_original_size: Optional[Tuple[int, int]] = None,
|
1177 |
+
negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
|
1178 |
+
negative_target_size: Optional[Tuple[int, int]] = None,
|
1179 |
+
aesthetic_score: float = 6.0,
|
1180 |
+
negative_aesthetic_score: float = 2.5,
|
1181 |
+
clip_skip: Optional[int] = None,
|
1182 |
+
callback_on_step_end: Optional[
|
1183 |
+
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
|
1184 |
+
] = None,
|
1185 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
1186 |
+
**kwargs,
|
1187 |
+
):
|
1188 |
+
r"""
|
1189 |
+
Function invoked when calling the pipeline for generation.
|
1190 |
+
|
1191 |
+
Args:
|
1192 |
+
prompt (`str` or `List[str]`, *optional*):
|
1193 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
1194 |
+
instead.
|
1195 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
1196 |
+
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
1197 |
+
used in both text-encoders
|
1198 |
+
image (`PIL.Image.Image`):
|
1199 |
+
`Image`, or tensor representing an image batch which will be inpainted, *i.e.* parts of the image will
|
1200 |
+
be masked out with `mask_image` and repainted according to `prompt`.
|
1201 |
+
mask_image (`PIL.Image.Image`):
|
1202 |
+
`Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be
|
1203 |
+
repainted, while black pixels will be preserved. If `mask_image` is a PIL image, it will be converted
|
1204 |
+
to a single channel (luminance) before use. If it's a tensor, it should contain one color channel (L)
|
1205 |
+
instead of 3, so the expected shape would be `(B, H, W, 1)`.
|
1206 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
1207 |
+
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
1208 |
+
Anything below 512 pixels won't work well for
|
1209 |
+
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
1210 |
+
and checkpoints that are not specifically fine-tuned on low resolutions.
|
1211 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
1212 |
+
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
1213 |
+
Anything below 512 pixels won't work well for
|
1214 |
+
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
1215 |
+
and checkpoints that are not specifically fine-tuned on low resolutions.
|
1216 |
+
padding_mask_crop (`int`, *optional*, defaults to `None`):
|
1217 |
+
The size of margin in the crop to be applied to the image and masking. If `None`, no crop is applied to
|
1218 |
+
image and mask_image. If `padding_mask_crop` is not `None`, it will first find a rectangular region
|
1219 |
+
with the same aspect ration of the image and contains all masked area, and then expand that area based
|
1220 |
+
on `padding_mask_crop`. The image and mask_image will then be cropped based on the expanded area before
|
1221 |
+
resizing to the original image size for inpainting. This is useful when the masked area is small while
|
1222 |
+
the image is large and contain information irrelevant for inpainting, such as background.
|
1223 |
+
strength (`float`, *optional*, defaults to 0.9999):
|
1224 |
+
Conceptually, indicates how much to transform the masked portion of the reference `image`. Must be
|
1225 |
+
between 0 and 1. `image` will be used as a starting point, adding more noise to it the larger the
|
1226 |
+
`strength`. The number of denoising steps depends on the amount of noise initially added. When
|
1227 |
+
`strength` is 1, added noise will be maximum and the denoising process will run for the full number of
|
1228 |
+
iterations specified in `num_inference_steps`. A value of 1, therefore, essentially ignores the masked
|
1229 |
+
portion of the reference `image`. Note that in the case of `denoising_start` being declared as an
|
1230 |
+
integer, the value of `strength` will be ignored.
|
1231 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
1232 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
1233 |
+
expense of slower inference.
|
1234 |
+
timesteps (`List[int]`, *optional*):
|
1235 |
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
1236 |
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
1237 |
+
passed will be used. Must be in descending order.
|
1238 |
+
sigmas (`List[float]`, *optional*):
|
1239 |
+
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
1240 |
+
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
1241 |
+
will be used.
|
1242 |
+
denoising_start (`float`, *optional*):
|
1243 |
+
When specified, indicates the fraction (between 0.0 and 1.0) of the total denoising process to be
|
1244 |
+
bypassed before it is initiated. Consequently, the initial part of the denoising process is skipped and
|
1245 |
+
it is assumed that the passed `image` is a partly denoised image. Note that when this is specified,
|
1246 |
+
strength will be ignored. The `denoising_start` parameter is particularly beneficial when this pipeline
|
1247 |
+
is integrated into a "Mixture of Denoisers" multi-pipeline setup, as detailed in [**Refining the Image
|
1248 |
+
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output).
|
1249 |
+
denoising_end (`float`, *optional*):
|
1250 |
+
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
|
1251 |
+
completed before it is intentionally prematurely terminated. As a result, the returned sample will
|
1252 |
+
still retain a substantial amount of noise (ca. final 20% of timesteps still needed) and should be
|
1253 |
+
denoised by a successor pipeline that has `denoising_start` set to 0.8 so that it only denoises the
|
1254 |
+
final 20% of the scheduler. The denoising_end parameter should ideally be utilized when this pipeline
|
1255 |
+
forms a part of a "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
|
1256 |
+
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output).
|
1257 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
1258 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
1259 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
1260 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
1261 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
1262 |
+
usually at the expense of lower image quality.
|
1263 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
1264 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
1265 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
1266 |
+
less than `1`).
|
1267 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
1268 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
1269 |
+
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
1270 |
+
prompt_embeds (`torch.Tensor`, *optional*):
|
1271 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
1272 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
1273 |
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
1274 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
1275 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
1276 |
+
argument.
|
1277 |
+
pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
1278 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
1279 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
1280 |
+
negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
1281 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
1282 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
1283 |
+
input argument.
|
1284 |
+
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
1285 |
+
ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
|
1286 |
+
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
|
1287 |
+
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
|
1288 |
+
contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
|
1289 |
+
provided, embeddings are computed from the `ip_adapter_image` input argument.
|
1290 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
1291 |
+
The number of images to generate per prompt.
|
1292 |
+
eta (`float`, *optional*, defaults to 0.0):
|
1293 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
1294 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
1295 |
+
generator (`torch.Generator`, *optional*):
|
1296 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
1297 |
+
to make generation deterministic.
|
1298 |
+
latents (`torch.Tensor`, *optional*):
|
1299 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
1300 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
1301 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
1302 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
1303 |
+
The output format of the generate image. Choose between
|
1304 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
1305 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
1306 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
1307 |
+
plain tuple.
|
1308 |
+
cross_attention_kwargs (`dict`, *optional*):
|
1309 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
1310 |
+
`self.processor` in
|
1311 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
1312 |
+
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
1313 |
+
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
|
1314 |
+
`original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
|
1315 |
+
explained in section 2.2 of
|
1316 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
1317 |
+
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
1318 |
+
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
|
1319 |
+
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
|
1320 |
+
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
|
1321 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
1322 |
+
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
1323 |
+
For most cases, `target_size` should be set to the desired height and width of the generated image. If
|
1324 |
+
not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
|
1325 |
+
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
1326 |
+
negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
1327 |
+
To negatively condition the generation process based on a specific image resolution. Part of SDXL's
|
1328 |
+
micro-conditioning as explained in section 2.2 of
|
1329 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
1330 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
1331 |
+
negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
1332 |
+
To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
|
1333 |
+
micro-conditioning as explained in section 2.2 of
|
1334 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
1335 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
1336 |
+
negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
1337 |
+
To negatively condition the generation process based on a target image resolution. It should be as same
|
1338 |
+
as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
|
1339 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
1340 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
1341 |
+
aesthetic_score (`float`, *optional*, defaults to 6.0):
|
1342 |
+
Used to simulate an aesthetic score of the generated image by influencing the positive text condition.
|
1343 |
+
Part of SDXL's micro-conditioning as explained in section 2.2 of
|
1344 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
1345 |
+
negative_aesthetic_score (`float`, *optional*, defaults to 2.5):
|
1346 |
+
Part of SDXL's micro-conditioning as explained in section 2.2 of
|
1347 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). Can be used to
|
1348 |
+
simulate an aesthetic score of the generated image by influencing the negative text condition.
|
1349 |
+
clip_skip (`int`, *optional*):
|
1350 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
1351 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
1352 |
+
callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
|
1353 |
+
A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
|
1354 |
+
each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
|
1355 |
+
DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
|
1356 |
+
list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
|
1357 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
1358 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
1359 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
1360 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
1361 |
+
|
1362 |
+
Examples:
|
1363 |
+
|
1364 |
+
Returns:
|
1365 |
+
[`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] or `tuple`:
|
1366 |
+
[`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
|
1367 |
+
`tuple. `tuple. When returning a tuple, the first element is a list with the generated images.
|
1368 |
+
"""
|
1369 |
+
|
1370 |
+
callback = kwargs.pop("callback", None)
|
1371 |
+
callback_steps = kwargs.pop("callback_steps", None)
|
1372 |
+
|
1373 |
+
if callback is not None:
|
1374 |
+
deprecate(
|
1375 |
+
"callback",
|
1376 |
+
"1.0.0",
|
1377 |
+
"Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
|
1378 |
+
)
|
1379 |
+
if callback_steps is not None:
|
1380 |
+
deprecate(
|
1381 |
+
"callback_steps",
|
1382 |
+
"1.0.0",
|
1383 |
+
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
|
1384 |
+
)
|
1385 |
+
|
1386 |
+
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
1387 |
+
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
1388 |
+
|
1389 |
+
# 0. Default height and width to unet
|
1390 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
1391 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
1392 |
+
|
1393 |
+
# 1. Check inputs
|
1394 |
+
self.check_inputs(
|
1395 |
+
prompt,
|
1396 |
+
prompt_2,
|
1397 |
+
image,
|
1398 |
+
mask_image,
|
1399 |
+
height,
|
1400 |
+
width,
|
1401 |
+
strength,
|
1402 |
+
callback_steps,
|
1403 |
+
output_type,
|
1404 |
+
negative_prompt,
|
1405 |
+
negative_prompt_2,
|
1406 |
+
prompt_embeds,
|
1407 |
+
negative_prompt_embeds,
|
1408 |
+
ip_adapter_image,
|
1409 |
+
ip_adapter_image_embeds,
|
1410 |
+
callback_on_step_end_tensor_inputs,
|
1411 |
+
padding_mask_crop,
|
1412 |
+
)
|
1413 |
+
|
1414 |
+
self._guidance_scale = guidance_scale
|
1415 |
+
self._guidance_rescale = guidance_rescale
|
1416 |
+
self._clip_skip = clip_skip
|
1417 |
+
self._cross_attention_kwargs = cross_attention_kwargs
|
1418 |
+
self._denoising_end = denoising_end
|
1419 |
+
self._denoising_start = denoising_start
|
1420 |
+
self._interrupt = False
|
1421 |
+
|
1422 |
+
# 2. Define call parameters
|
1423 |
+
if prompt is not None and isinstance(prompt, str):
|
1424 |
+
batch_size = 1
|
1425 |
+
elif prompt is not None and isinstance(prompt, list):
|
1426 |
+
batch_size = len(prompt)
|
1427 |
+
else:
|
1428 |
+
batch_size = prompt_embeds.shape[0]
|
1429 |
+
|
1430 |
+
device = self._execution_device
|
1431 |
+
|
1432 |
+
# 3. Encode input prompt
|
1433 |
+
text_encoder_lora_scale = (
|
1434 |
+
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
|
1435 |
+
)
|
1436 |
+
|
1437 |
+
(
|
1438 |
+
prompt_embeds,
|
1439 |
+
negative_prompt_embeds,
|
1440 |
+
pooled_prompt_embeds,
|
1441 |
+
negative_pooled_prompt_embeds,
|
1442 |
+
) = self.encode_prompt(
|
1443 |
+
prompt=prompt,
|
1444 |
+
device=device,
|
1445 |
+
num_images_per_prompt=num_images_per_prompt,
|
1446 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
1447 |
+
negative_prompt=negative_prompt,
|
1448 |
+
prompt_embeds=prompt_embeds,
|
1449 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
1450 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
1451 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
1452 |
+
lora_scale=text_encoder_lora_scale,
|
1453 |
+
)
|
1454 |
+
|
1455 |
+
# 4. set timesteps
|
1456 |
+
def denoising_value_valid(dnv):
|
1457 |
+
return isinstance(dnv, float) and 0 < dnv < 1
|
1458 |
+
|
1459 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
1460 |
+
self.scheduler, num_inference_steps, device, timesteps, sigmas
|
1461 |
+
)
|
1462 |
+
timesteps, num_inference_steps = self.get_timesteps(
|
1463 |
+
num_inference_steps,
|
1464 |
+
strength,
|
1465 |
+
device,
|
1466 |
+
denoising_start=self.denoising_start if denoising_value_valid(self.denoising_start) else None,
|
1467 |
+
)
|
1468 |
+
# check that number of inference steps is not < 1 - as this doesn't make sense
|
1469 |
+
if num_inference_steps < 1:
|
1470 |
+
raise ValueError(
|
1471 |
+
f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline"
|
1472 |
+
f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline."
|
1473 |
+
)
|
1474 |
+
# at which timestep to set the initial noise (n.b. 50% if strength is 0.5)
|
1475 |
+
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
|
1476 |
+
# create a boolean to check if the strength is set to 1. if so then initialise the latents with pure noise
|
1477 |
+
is_strength_max = strength == 1.0
|
1478 |
+
|
1479 |
+
# 5. Preprocess mask and image
|
1480 |
+
if padding_mask_crop is not None:
|
1481 |
+
crops_coords = self.mask_processor.get_crop_region(mask_image, width, height, pad=padding_mask_crop)
|
1482 |
+
resize_mode = "fill"
|
1483 |
+
else:
|
1484 |
+
crops_coords = None
|
1485 |
+
resize_mode = "default"
|
1486 |
+
|
1487 |
+
original_image = image
|
1488 |
+
init_image = self.image_processor.preprocess(
|
1489 |
+
image, height=height, width=width, crops_coords=crops_coords, resize_mode=resize_mode
|
1490 |
+
)
|
1491 |
+
init_image = init_image.to(dtype=torch.float32)
|
1492 |
+
|
1493 |
+
mask = self.mask_processor.preprocess(
|
1494 |
+
mask_image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords
|
1495 |
+
)
|
1496 |
+
|
1497 |
+
if masked_image_latents is not None:
|
1498 |
+
masked_image = masked_image_latents
|
1499 |
+
elif init_image.shape[1] == 4:
|
1500 |
+
# if images are in latent space, we can't mask it
|
1501 |
+
masked_image = None
|
1502 |
+
else:
|
1503 |
+
masked_image = init_image * (mask < 0.5)
|
1504 |
+
|
1505 |
+
# 6. Prepare latent variables
|
1506 |
+
num_channels_latents = self.vae.config.latent_channels
|
1507 |
+
num_channels_unet = self.unet.config.in_channels
|
1508 |
+
return_image_latents = num_channels_unet == 4
|
1509 |
+
|
1510 |
+
add_noise = True if self.denoising_start is None else False
|
1511 |
+
latents_outputs = self.prepare_latents(
|
1512 |
+
batch_size * num_images_per_prompt,
|
1513 |
+
num_channels_latents,
|
1514 |
+
height,
|
1515 |
+
width,
|
1516 |
+
prompt_embeds.dtype,
|
1517 |
+
device,
|
1518 |
+
generator,
|
1519 |
+
latents,
|
1520 |
+
image=init_image,
|
1521 |
+
timestep=latent_timestep,
|
1522 |
+
is_strength_max=is_strength_max,
|
1523 |
+
add_noise=add_noise,
|
1524 |
+
return_noise=True,
|
1525 |
+
return_image_latents=return_image_latents,
|
1526 |
+
)
|
1527 |
+
|
1528 |
+
if return_image_latents:
|
1529 |
+
latents, noise, image_latents = latents_outputs
|
1530 |
+
else:
|
1531 |
+
latents, noise = latents_outputs
|
1532 |
+
|
1533 |
+
# 7. Prepare mask latent variables
|
1534 |
+
mask, masked_image_latents = self.prepare_mask_latents(
|
1535 |
+
mask,
|
1536 |
+
masked_image,
|
1537 |
+
batch_size * num_images_per_prompt,
|
1538 |
+
height,
|
1539 |
+
width,
|
1540 |
+
prompt_embeds.dtype,
|
1541 |
+
device,
|
1542 |
+
generator,
|
1543 |
+
self.do_classifier_free_guidance,
|
1544 |
+
)
|
1545 |
+
|
1546 |
+
# 8. Check that sizes of mask, masked image and latents match
|
1547 |
+
if num_channels_unet == 9:
|
1548 |
+
# default case for runwayml/stable-diffusion-inpainting
|
1549 |
+
num_channels_mask = mask.shape[1]
|
1550 |
+
num_channels_masked_image = masked_image_latents.shape[1]
|
1551 |
+
if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels:
|
1552 |
+
raise ValueError(
|
1553 |
+
f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects"
|
1554 |
+
f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +"
|
1555 |
+
f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}"
|
1556 |
+
f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of"
|
1557 |
+
" `pipeline.unet` or your `mask_image` or `image` input."
|
1558 |
+
)
|
1559 |
+
elif num_channels_unet != 4:
|
1560 |
+
raise ValueError(
|
1561 |
+
f"The unet {self.unet.__class__} should have either 4 or 9 input channels, not {self.unet.config.in_channels}."
|
1562 |
+
)
|
1563 |
+
# 8.1 Prepare extra step kwargs.
|
1564 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
1565 |
+
|
1566 |
+
# 9. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
1567 |
+
height, width = latents.shape[-2:]
|
1568 |
+
height = height * self.vae_scale_factor
|
1569 |
+
width = width * self.vae_scale_factor
|
1570 |
+
|
1571 |
+
original_size = original_size or (height, width)
|
1572 |
+
target_size = target_size or (height, width)
|
1573 |
+
|
1574 |
+
# 10. Prepare added time ids & embeddings
|
1575 |
+
if negative_original_size is None:
|
1576 |
+
negative_original_size = original_size
|
1577 |
+
if negative_target_size is None:
|
1578 |
+
negative_target_size = target_size
|
1579 |
+
|
1580 |
+
add_text_embeds = pooled_prompt_embeds
|
1581 |
+
if self.text_encoder_2 is None:
|
1582 |
+
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
|
1583 |
+
else:
|
1584 |
+
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
|
1585 |
+
|
1586 |
+
add_time_ids, add_neg_time_ids = self._get_add_time_ids(
|
1587 |
+
original_size,
|
1588 |
+
crops_coords_top_left,
|
1589 |
+
target_size,
|
1590 |
+
aesthetic_score,
|
1591 |
+
negative_aesthetic_score,
|
1592 |
+
negative_original_size,
|
1593 |
+
negative_crops_coords_top_left,
|
1594 |
+
negative_target_size,
|
1595 |
+
dtype=prompt_embeds.dtype,
|
1596 |
+
text_encoder_projection_dim=text_encoder_projection_dim,
|
1597 |
+
)
|
1598 |
+
add_time_ids = add_time_ids.repeat(batch_size * num_images_per_prompt, 1)
|
1599 |
+
|
1600 |
+
if self.do_classifier_free_guidance:
|
1601 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
1602 |
+
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
1603 |
+
add_neg_time_ids = add_neg_time_ids.repeat(batch_size * num_images_per_prompt, 1)
|
1604 |
+
add_time_ids = torch.cat([add_neg_time_ids, add_time_ids], dim=0)
|
1605 |
+
|
1606 |
+
prompt_embeds = prompt_embeds.to(device)
|
1607 |
+
add_text_embeds = add_text_embeds.to(device)
|
1608 |
+
add_time_ids = add_time_ids.to(device)
|
1609 |
+
|
1610 |
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
1611 |
+
image_embeds = self.prepare_ip_adapter_image_embeds(
|
1612 |
+
ip_adapter_image,
|
1613 |
+
ip_adapter_image_embeds,
|
1614 |
+
device,
|
1615 |
+
batch_size * num_images_per_prompt,
|
1616 |
+
self.do_classifier_free_guidance,
|
1617 |
+
)
|
1618 |
+
|
1619 |
+
|
1620 |
+
# 11. Denoising loop
|
1621 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
1622 |
+
|
1623 |
+
if (
|
1624 |
+
self.denoising_end is not None
|
1625 |
+
and self.denoising_start is not None
|
1626 |
+
and denoising_value_valid(self.denoising_end)
|
1627 |
+
and denoising_value_valid(self.denoising_start)
|
1628 |
+
and self.denoising_start >= self.denoising_end
|
1629 |
+
):
|
1630 |
+
raise ValueError(
|
1631 |
+
f"`denoising_start`: {self.denoising_start} cannot be larger than or equal to `denoising_end`: "
|
1632 |
+
+ f" {self.denoising_end} when using type float."
|
1633 |
+
)
|
1634 |
+
elif self.denoising_end is not None and denoising_value_valid(self.denoising_end):
|
1635 |
+
discrete_timestep_cutoff = int(
|
1636 |
+
round(
|
1637 |
+
self.scheduler.config.num_train_timesteps
|
1638 |
+
- (self.denoising_end * self.scheduler.config.num_train_timesteps)
|
1639 |
+
)
|
1640 |
+
)
|
1641 |
+
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
|
1642 |
+
timesteps = timesteps[:num_inference_steps]
|
1643 |
+
|
1644 |
+
# 11.1 Optionally get Guidance Scale Embedding
|
1645 |
+
timestep_cond = None
|
1646 |
+
if self.unet.config.time_cond_proj_dim is not None:
|
1647 |
+
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
|
1648 |
+
timestep_cond = self.get_guidance_scale_embedding(
|
1649 |
+
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
|
1650 |
+
).to(device=device, dtype=latents.dtype)
|
1651 |
+
|
1652 |
+
self._num_timesteps = len(timesteps)
|
1653 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
1654 |
+
for i, t in enumerate(timesteps):
|
1655 |
+
if self.interrupt:
|
1656 |
+
continue
|
1657 |
+
# expand the latents if we are doing classifier free guidance
|
1658 |
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
1659 |
+
|
1660 |
+
# concat latents, mask, masked_image_latents in the channel dimension
|
1661 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
1662 |
+
|
1663 |
+
if num_channels_unet == 9:
|
1664 |
+
latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1)
|
1665 |
+
|
1666 |
+
# predict the noise residual
|
1667 |
+
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
1668 |
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
1669 |
+
added_cond_kwargs["image_embeds"] = image_embeds
|
1670 |
+
noise_pred = self.unet(
|
1671 |
+
latent_model_input,
|
1672 |
+
t,
|
1673 |
+
encoder_hidden_states=prompt_embeds,
|
1674 |
+
timestep_cond=timestep_cond,
|
1675 |
+
cross_attention_kwargs=self.cross_attention_kwargs,
|
1676 |
+
added_cond_kwargs=added_cond_kwargs,
|
1677 |
+
return_dict=False,
|
1678 |
+
)[0]
|
1679 |
+
|
1680 |
+
# perform guidance
|
1681 |
+
if self.do_classifier_free_guidance:
|
1682 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
1683 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1684 |
+
|
1685 |
+
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
|
1686 |
+
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
1687 |
+
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
|
1688 |
+
|
1689 |
+
# compute the previous noisy sample x_t -> x_t-1
|
1690 |
+
latents_dtype = latents.dtype
|
1691 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
1692 |
+
if latents.dtype != latents_dtype:
|
1693 |
+
if torch.backends.mps.is_available():
|
1694 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
1695 |
+
latents = latents.to(latents_dtype)
|
1696 |
+
|
1697 |
+
if num_channels_unet == 4:
|
1698 |
+
init_latents_proper = image_latents
|
1699 |
+
if self.do_classifier_free_guidance:
|
1700 |
+
init_mask, _ = mask.chunk(2)
|
1701 |
+
else:
|
1702 |
+
init_mask = mask
|
1703 |
+
|
1704 |
+
if i < len(timesteps) - 1:
|
1705 |
+
noise_timestep = timesteps[i + 1]
|
1706 |
+
init_latents_proper = self.scheduler.add_noise(
|
1707 |
+
init_latents_proper, noise, torch.tensor([noise_timestep])
|
1708 |
+
)
|
1709 |
+
|
1710 |
+
latents = (1 - init_mask) * init_latents_proper + init_mask * latents
|
1711 |
+
|
1712 |
+
if callback_on_step_end is not None:
|
1713 |
+
callback_kwargs = {}
|
1714 |
+
for k in callback_on_step_end_tensor_inputs:
|
1715 |
+
callback_kwargs[k] = locals()[k]
|
1716 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
1717 |
+
|
1718 |
+
latents = callback_outputs.pop("latents", latents)
|
1719 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
1720 |
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
1721 |
+
add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds)
|
1722 |
+
negative_pooled_prompt_embeds = callback_outputs.pop(
|
1723 |
+
"negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
|
1724 |
+
)
|
1725 |
+
add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids)
|
1726 |
+
add_neg_time_ids = callback_outputs.pop("add_neg_time_ids", add_neg_time_ids)
|
1727 |
+
mask = callback_outputs.pop("mask", mask)
|
1728 |
+
masked_image_latents = callback_outputs.pop("masked_image_latents", masked_image_latents)
|
1729 |
+
|
1730 |
+
# call the callback, if provided
|
1731 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
1732 |
+
progress_bar.update()
|
1733 |
+
if callback is not None and i % callback_steps == 0:
|
1734 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
1735 |
+
callback(step_idx, t, latents)
|
1736 |
+
|
1737 |
+
if XLA_AVAILABLE:
|
1738 |
+
xm.mark_step()
|
1739 |
+
|
1740 |
+
if not output_type == "latent":
|
1741 |
+
# make sure the VAE is in float32 mode, as it overflows in float16
|
1742 |
+
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
1743 |
+
|
1744 |
+
if needs_upcasting:
|
1745 |
+
self.upcast_vae()
|
1746 |
+
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
1747 |
+
elif latents.dtype != self.vae.dtype:
|
1748 |
+
if torch.backends.mps.is_available():
|
1749 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
1750 |
+
self.vae = self.vae.to(latents.dtype)
|
1751 |
+
|
1752 |
+
# unscale/denormalize the latents
|
1753 |
+
# denormalize with the mean and std if available and not None
|
1754 |
+
has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None
|
1755 |
+
has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None
|
1756 |
+
if has_latents_mean and has_latents_std:
|
1757 |
+
latents_mean = (
|
1758 |
+
torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype)
|
1759 |
+
)
|
1760 |
+
latents_std = (
|
1761 |
+
torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype)
|
1762 |
+
)
|
1763 |
+
latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean
|
1764 |
+
else:
|
1765 |
+
latents = latents / self.vae.config.scaling_factor
|
1766 |
+
|
1767 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
1768 |
+
|
1769 |
+
# cast back to fp16 if needed
|
1770 |
+
if needs_upcasting:
|
1771 |
+
self.vae.to(dtype=torch.float16)
|
1772 |
+
else:
|
1773 |
+
return StableDiffusionXLPipelineOutput(images=latents)
|
1774 |
+
|
1775 |
+
# apply watermark if available
|
1776 |
+
if self.watermark is not None:
|
1777 |
+
image = self.watermark.apply_watermark(image)
|
1778 |
+
|
1779 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
1780 |
+
|
1781 |
+
if padding_mask_crop is not None:
|
1782 |
+
image = [self.image_processor.apply_overlay(mask_image, original_image, i, crops_coords) for i in image]
|
1783 |
+
|
1784 |
+
# Offload all models
|
1785 |
+
self.maybe_free_model_hooks()
|
1786 |
+
|
1787 |
+
if not return_dict:
|
1788 |
+
return (image,)
|
1789 |
+
|
1790 |
+
return StableDiffusionXLPipelineOutput(images=image)
|