|
import cv2 |
|
import numpy as np |
|
|
|
import onnxruntime |
|
|
|
def nms(boxes, scores, nms_thr): |
|
"""Single class NMS implemented in Numpy.""" |
|
x1 = boxes[:, 0] |
|
y1 = boxes[:, 1] |
|
x2 = boxes[:, 2] |
|
y2 = boxes[:, 3] |
|
|
|
areas = (x2 - x1 + 1) * (y2 - y1 + 1) |
|
order = scores.argsort()[::-1] |
|
|
|
keep = [] |
|
while order.size > 0: |
|
i = order[0] |
|
keep.append(i) |
|
xx1 = np.maximum(x1[i], x1[order[1:]]) |
|
yy1 = np.maximum(y1[i], y1[order[1:]]) |
|
xx2 = np.minimum(x2[i], x2[order[1:]]) |
|
yy2 = np.minimum(y2[i], y2[order[1:]]) |
|
|
|
w = np.maximum(0.0, xx2 - xx1 + 1) |
|
h = np.maximum(0.0, yy2 - yy1 + 1) |
|
inter = w * h |
|
ovr = inter / (areas[i] + areas[order[1:]] - inter) |
|
|
|
inds = np.where(ovr <= nms_thr)[0] |
|
order = order[inds + 1] |
|
|
|
return keep |
|
|
|
def multiclass_nms(boxes, scores, nms_thr, score_thr): |
|
"""Multiclass NMS implemented in Numpy. Class-aware version.""" |
|
final_dets = [] |
|
num_classes = scores.shape[1] |
|
for cls_ind in range(num_classes): |
|
cls_scores = scores[:, cls_ind] |
|
valid_score_mask = cls_scores > score_thr |
|
if valid_score_mask.sum() == 0: |
|
continue |
|
else: |
|
valid_scores = cls_scores[valid_score_mask] |
|
valid_boxes = boxes[valid_score_mask] |
|
keep = nms(valid_boxes, valid_scores, nms_thr) |
|
if len(keep) > 0: |
|
cls_inds = np.ones((len(keep), 1)) * cls_ind |
|
dets = np.concatenate( |
|
[valid_boxes[keep], valid_scores[keep, None], cls_inds], 1 |
|
) |
|
final_dets.append(dets) |
|
if len(final_dets) == 0: |
|
return None |
|
return np.concatenate(final_dets, 0) |
|
|
|
def demo_postprocess(outputs, img_size, p6=False): |
|
grids = [] |
|
expanded_strides = [] |
|
strides = [8, 16, 32] if not p6 else [8, 16, 32, 64] |
|
|
|
hsizes = [img_size[0] // stride for stride in strides] |
|
wsizes = [img_size[1] // stride for stride in strides] |
|
|
|
for hsize, wsize, stride in zip(hsizes, wsizes, strides): |
|
xv, yv = np.meshgrid(np.arange(wsize), np.arange(hsize)) |
|
grid = np.stack((xv, yv), 2).reshape(1, -1, 2) |
|
grids.append(grid) |
|
shape = grid.shape[:2] |
|
expanded_strides.append(np.full((*shape, 1), stride)) |
|
|
|
grids = np.concatenate(grids, 1) |
|
expanded_strides = np.concatenate(expanded_strides, 1) |
|
outputs[..., :2] = (outputs[..., :2] + grids) * expanded_strides |
|
outputs[..., 2:4] = np.exp(outputs[..., 2:4]) * expanded_strides |
|
|
|
return outputs |
|
|
|
def preprocess(img, input_size, swap=(2, 0, 1)): |
|
if len(img.shape) == 3: |
|
padded_img = np.ones((input_size[0], input_size[1], 3), dtype=np.uint8) * 114 |
|
else: |
|
padded_img = np.ones(input_size, dtype=np.uint8) * 114 |
|
|
|
r = min(input_size[0] / img.shape[0], input_size[1] / img.shape[1]) |
|
resized_img = cv2.resize( |
|
img, |
|
(int(img.shape[1] * r), int(img.shape[0] * r)), |
|
interpolation=cv2.INTER_LINEAR, |
|
).astype(np.uint8) |
|
padded_img[: int(img.shape[0] * r), : int(img.shape[1] * r)] = resized_img |
|
|
|
padded_img = padded_img.transpose(swap) |
|
padded_img = np.ascontiguousarray(padded_img, dtype=np.float32) |
|
return padded_img, r |
|
|
|
def inference_detector(session, oriImg): |
|
input_shape = (640,640) |
|
img, ratio = preprocess(oriImg, input_shape) |
|
|
|
ort_inputs = {session.get_inputs()[0].name: img[None, :, :, :]} |
|
output = session.run(None, ort_inputs) |
|
predictions = demo_postprocess(output[0], input_shape)[0] |
|
|
|
boxes = predictions[:, :4] |
|
scores = predictions[:, 4:5] * predictions[:, 5:] |
|
|
|
boxes_xyxy = np.ones_like(boxes) |
|
boxes_xyxy[:, 0] = boxes[:, 0] - boxes[:, 2]/2. |
|
boxes_xyxy[:, 1] = boxes[:, 1] - boxes[:, 3]/2. |
|
boxes_xyxy[:, 2] = boxes[:, 0] + boxes[:, 2]/2. |
|
boxes_xyxy[:, 3] = boxes[:, 1] + boxes[:, 3]/2. |
|
boxes_xyxy /= ratio |
|
dets = multiclass_nms(boxes_xyxy, scores, nms_thr=0.45, score_thr=0.1) |
|
if dets is not None: |
|
final_boxes, final_scores, final_cls_inds = dets[:, :4], dets[:, 4], dets[:, 5] |
|
isscore = final_scores>0.3 |
|
iscat = final_cls_inds == 0 |
|
isbbox = [ i and j for (i, j) in zip(isscore, iscat)] |
|
final_boxes = final_boxes[isbbox] |
|
else: |
|
final_boxes = np.array([]) |
|
|
|
return final_boxes |
|
|