|
import spaces |
|
import random |
|
import torch |
|
import cv2 |
|
import gradio as gr |
|
import numpy as np |
|
from huggingface_hub import snapshot_download |
|
from transformers import CLIPVisionModelWithProjection,CLIPImageProcessor |
|
from diffusers.utils import load_image |
|
from kolors.pipelines.pipeline_controlnet_xl_kolors_img2img import StableDiffusionXLControlNetImg2ImgPipeline |
|
from kolors.models.modeling_chatglm import ChatGLMModel |
|
from kolors.models.tokenization_chatglm import ChatGLMTokenizer |
|
from kolors.models.controlnet import ControlNetModel |
|
from diffusers import AutoencoderKL |
|
from kolors.models.unet_2d_condition import UNet2DConditionModel |
|
from diffusers import EulerDiscreteScheduler |
|
from PIL import Image |
|
from annotator.midas import MidasDetector |
|
from annotator.util import resize_image, HWC3 |
|
|
|
|
|
device = "cuda" |
|
ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors") |
|
ckpt_dir_depth = snapshot_download(repo_id="Kwai-Kolors/Kolors-ControlNet-Depth") |
|
ckpt_dir_canny = snapshot_download(repo_id="Kwai-Kolors/Kolors-ControlNet-Canny") |
|
|
|
text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half().to(device) |
|
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder') |
|
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device) |
|
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler") |
|
unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device) |
|
controlnet_depth = ControlNetModel.from_pretrained(f"{ckpt_dir_depth}", revision=None).half().to(device) |
|
controlnet_canny = ControlNetModel.from_pretrained(f"{ckpt_dir_canny}", revision=None).half().to(device) |
|
|
|
pipe_depth = StableDiffusionXLControlNetImg2ImgPipeline( |
|
vae=vae, |
|
controlnet = controlnet_depth, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
unet=unet, |
|
scheduler=scheduler, |
|
force_zeros_for_empty_prompt=False |
|
) |
|
|
|
pipe_canny = StableDiffusionXLControlNetImg2ImgPipeline( |
|
vae=vae, |
|
controlnet = controlnet_canny, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
unet=unet, |
|
scheduler=scheduler, |
|
force_zeros_for_empty_prompt=False |
|
) |
|
|
|
@spaces.GPU |
|
def process_canny_condition(image, canny_threods=[100,200]): |
|
np_image = image.copy() |
|
np_image = cv2.Canny(np_image, canny_threods[0], canny_threods[1]) |
|
np_image = np_image[:, :, None] |
|
np_image = np.concatenate([np_image, np_image, np_image], axis=2) |
|
np_image = HWC3(np_image) |
|
return Image.fromarray(np_image) |
|
|
|
model_midas = MidasDetector() |
|
|
|
@spaces.GPU |
|
def process_depth_condition_midas(img, res = 1024): |
|
h,w,_ = img.shape |
|
img = resize_image(HWC3(img), res) |
|
result = HWC3(model_midas(img)) |
|
result = cv2.resize(result, (w,h)) |
|
return Image.fromarray(result) |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
MAX_IMAGE_SIZE = 1024 |
|
|
|
@spaces.GPU |
|
def infer(prompt, |
|
image = None, |
|
controlnet_type = "Depth", |
|
negative_prompt = "", |
|
seed = 0, |
|
randomize_seed = False, |
|
guidance_scale = 6.0, |
|
num_inference_steps = 50, |
|
controlnet_conditioning_scale = 0.7, |
|
control_guidance_end = 0.9, |
|
strength = 1.0 |
|
): |
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
generator = torch.Generator().manual_seed(seed) |
|
init_image = resize_image(image, MAX_IMAGE_SIZE) |
|
if controlnet_type == "Depth": |
|
pipe = pipe_depth.to("cuda") |
|
condi_img = process_depth_condition_midas( np.array(init_image), MAX_IMAGE_SIZE) |
|
elif controlnet_type == "Canny": |
|
pipe = pipe_canny.to("cuda") |
|
condi_img = process_canny_condition(np.array(init_image)) |
|
else: |
|
return None |
|
image = pipe( |
|
prompt= prompt , |
|
image = init_image, |
|
controlnet_conditioning_scale = controlnet_conditioning_scale, |
|
control_guidance_end = control_guidance_end, |
|
strength= strength , |
|
control_image = condi_img, |
|
negative_prompt= negative_prompt , |
|
num_inference_steps= num_inference_steps, |
|
guidance_scale= guidance_scale, |
|
num_images_per_prompt=1, |
|
generator=generator, |
|
).images[0] |
|
return [condi_img, image] |
|
|
|
examples = [ |
|
["一个漂亮的女孩,高品质,超清晰,色彩鲜艳,超高分辨率,最佳品质,8k,高清,4K", |
|
"woman_1.png", "Canny"], |
|
["全景,一只可爱的白色小狗坐在杯子里,看向镜头,动漫风格,3d渲染,辛烷值渲染", |
|
"dog.png", "Canny"], |
|
["新海诚风格,丰富的色彩,穿着绿色衬衫的女人站在田野里,唯美风景,清新明亮,斑驳的光影,最好的质量,超细节,8K画质", |
|
"woman_2.png", "Depth"], |
|
["一只颜色鲜艳的小鸟,高品质,超清晰,色彩鲜艳,超高分辨率,最佳品质,8k,高清,4K", |
|
"bird.png", "Depth"] |
|
] |
|
|
|
css=""" |
|
#col-left { |
|
margin: 0 auto; |
|
max-width: 600px; |
|
} |
|
#col-right { |
|
margin: 0 auto; |
|
max-width: 750px; |
|
} |
|
""" |
|
|
|
def load_description(fp): |
|
with open(fp, 'r', encoding='utf-8') as f: |
|
content = f.read() |
|
return content |
|
|
|
with gr.Blocks(css=css) as Kolors: |
|
gr.HTML(load_description("assets/title.md")) |
|
with gr.Row(): |
|
with gr.Column(elem_id="col-left"): |
|
with gr.Row(): |
|
prompt = gr.Textbox( |
|
label="Prompt", |
|
placeholder="Enter your prompt", |
|
lines=2 |
|
) |
|
with gr.Row(): |
|
controlnet_type = gr.Dropdown( |
|
["Depth", "Canny"], |
|
label = "Controlnet", |
|
value="Depth" |
|
) |
|
with gr.Row(): |
|
image = gr.Image(label="Image", type="pil") |
|
with gr.Accordion("Advanced Settings", open=False): |
|
negative_prompt = gr.Textbox( |
|
label="Negative prompt", |
|
placeholder="Enter a negative prompt", |
|
visible=True, |
|
value="nsfw,脸部阴影,低分辨率,jpeg伪影、模糊、糟糕,黑脸,霓虹灯" |
|
) |
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
) |
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
with gr.Row(): |
|
guidance_scale = gr.Slider( |
|
label="Guidance scale", |
|
minimum=0.0, |
|
maximum=10.0, |
|
step=0.1, |
|
value=6.0, |
|
) |
|
num_inference_steps = gr.Slider( |
|
label="Number of inference steps", |
|
minimum=10, |
|
maximum=50, |
|
step=1, |
|
value=30, |
|
) |
|
with gr.Row(): |
|
controlnet_conditioning_scale = gr.Slider( |
|
label="Controlnet Conditioning Scale", |
|
minimum=0.0, |
|
maximum=1.0, |
|
step=0.1, |
|
value=0.7, |
|
) |
|
control_guidance_end = gr.Slider( |
|
label="Control Guidance End", |
|
minimum=0.0, |
|
maximum=1.0, |
|
step=0.1, |
|
value=0.9, |
|
) |
|
with gr.Row(): |
|
strength = gr.Slider( |
|
label="Strength", |
|
minimum=0.0, |
|
maximum=1.0, |
|
step=0.1, |
|
value=1.0, |
|
) |
|
with gr.Row(): |
|
run_button = gr.Button("Run") |
|
|
|
with gr.Column(elem_id="col-right"): |
|
result = gr.Gallery(label="Result", show_label=False, columns=2) |
|
|
|
with gr.Row(): |
|
gr.Examples( |
|
fn = infer, |
|
examples = examples, |
|
inputs = [prompt, image, controlnet_type], |
|
outputs = [result] |
|
) |
|
|
|
run_button.click( |
|
fn = infer, |
|
inputs = [prompt, image, controlnet_type, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength], |
|
outputs = [result] |
|
) |
|
|
|
Kolors.queue().launch(debug=True) |
|
|