Spaces:
Running
Running
arxivgpt kim
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -3,42 +3,41 @@ from gradio_client import Client
|
|
3 |
|
4 |
def get_caption(image_in):
|
5 |
client = Client("https://vikhyatk-moondream1.hf.space/")
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
)
|
11 |
-
print(
|
12 |
-
return
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
22 |
)
|
23 |
-
|
24 |
-
return
|
25 |
-
|
26 |
def infer(image_in):
|
27 |
caption = get_caption(image_in)
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
# 예제에서는 단순히 이미지 경로를 반환하도록 생략합니다.
|
32 |
-
return image_in # 실제로는 get_lcm 함수의 결과를 반환해야 합니다.
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
42 |
|
43 |
-
# Launch the interface
|
44 |
-
interface.queue(max_size=25).launch()
|
|
|
3 |
|
4 |
def get_caption(image_in):
|
5 |
client = Client("https://vikhyatk-moondream1.hf.space/")
|
6 |
+
result = client.predict(
|
7 |
+
image_in, # filepath in 'image' Image component
|
8 |
+
"Describe the image", # str in 'Question' Textbox component
|
9 |
+
api_name="/answer_question"
|
10 |
)
|
11 |
+
print(result)
|
12 |
+
return result
|
13 |
|
14 |
+
def get_lcm(prompt):
|
15 |
+
client = Client("https://latent-consistency-lcm-lora-for-sdxl.hf.space/")
|
16 |
+
result = client.predict(
|
17 |
+
prompt, # str in 'parameter_5' Textbox component
|
18 |
+
0.3, # float (numeric value between 0.0 and 5) in 'Guidance' Slider component
|
19 |
+
8, # float (numeric value between 2 and 10) in 'Steps' Slider component
|
20 |
+
0, # float (numeric value between 0 and 12013012031030) in 'Seed' Slider component
|
21 |
+
True, # bool in 'Randomize' Checkbox component
|
22 |
+
api_name="/predict"
|
23 |
)
|
24 |
+
print(result)
|
25 |
+
return result[0]
|
26 |
+
|
27 |
def infer(image_in):
|
28 |
caption = get_caption(image_in)
|
29 |
+
img_var = get_lcm(caption)
|
30 |
+
return img_var
|
|
|
|
|
|
|
31 |
|
32 |
+
gr.Interface(
|
33 |
+
title = "ArXivGPT Image",
|
34 |
+
description = "Image to Image variation, using LCM SDXL & Moondream1",
|
35 |
+
fn = infer,
|
36 |
+
inputs = [
|
37 |
+
gr.Image(type="filepath", label="Image input")
|
38 |
+
],
|
39 |
+
outputs = [
|
40 |
+
gr.Image(label="LCM Image variation")
|
41 |
+
]
|
42 |
+
).queue(max_size=25).launch()
|
43 |
|
|
|
|