ofai-kai / app.py
seawolf2357's picture
Update app.py
cde7a7b verified
raw
history blame
4.04 kB
import gradio as gr
import aiohttp
import os
import json
from collections import deque
TOKEN = os.getenv("HUGGINGFACE_API_TOKEN")
if not TOKEN:
raise ValueError("API token is not set. Please set the HUGGINGFACE_API_TOKEN environment variable.")
print(f"API Token: {TOKEN[:5]}...{TOKEN[-5:]}") # Check API token
memory = deque(maxlen=10)
async def test_api():
headers = {"Authorization": f"Bearer {TOKEN}"}
async with aiohttp.ClientSession() as session:
async with session.get("https://api-inference.huggingface.co/models/mistralai/Mistral-Nemo-Instruct-2407", headers=headers) as response:
print(f"Test API response: {await response.text()}")
async def respond(
message,
history: list[tuple[str, str]],
system_message="AI Assistant Role",
max_tokens=512,
temperature=0.7,
top_p=0.95,
):
system_prefix = "System: Respond in the same language as the input (English, Korean, Chinese, Japanese, etc.)."
full_system_message = f"{system_prefix}{system_message}"
memory.append((message, None))
messages = [{"role": "system", "content": full_system_message}]
for val in memory:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
headers = {
"Authorization": f"Bearer {TOKEN}",
"Content-Type": "application/json"
}
payload = {
"model": "mistralai/Mistral-Nemo-Instruct-2407",
"max_tokens": max_tokens,
"temperature": temperature,
"top_p": top_p,
"messages": messages,
"stream": True
}
try:
async with aiohttp.ClientSession() as session:
async with session.post("https://api-inference.huggingface.co/v1/chat/completions", headers=headers, json=payload) as response:
print(f"Response status: {response.status}")
if response.status != 200:
error_text = await response.text()
print(f"Error response: {error_text}")
yield "An API response error occurred. Please try again."
return
response_text = ""
async for chunk in response.content:
if chunk:
try:
chunk_data = chunk.decode('utf-8')
response_json = json.loads(chunk_data)
if "choices" in response_json:
content = response_json["choices"][0]["message"]["content"]
response_text += content
yield response_text
except json.JSONDecodeError:
continue
if not response_text:
yield "I apologize, but I couldn't generate a response. Please try again."
except Exception as e:
print(f"Exception occurred: {str(e)}")
yield f"An error occurred: {str(e)}"
memory[-1] = (message, response_text)
async def chat(message, history, system_message, max_tokens, temperature, top_p):
response = ""
async for chunk in respond(message, history, system_message, max_tokens, temperature, top_p):
response = chunk
yield response
theme = "Nymbo/Nymbo_Theme"
css = """
footer {
visibility: hidden;
}
"""
demo = gr.ChatInterface(
css=css,
fn=chat,
theme=theme,
additional_inputs=[
gr.Textbox(value="AI Assistant Role", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
]
)
if __name__ == "__main__":
import asyncio
asyncio.run(test_api()) # Run API test
demo.queue().launch(max_threads=20)