|
import gradio as gr |
|
import aiohttp |
|
import os |
|
import json |
|
from collections import deque |
|
|
|
TOKEN = os.getenv("HUGGINGFACE_API_TOKEN") |
|
|
|
if not TOKEN: |
|
raise ValueError("API token is not set. Please set the HUGGINGFACE_API_TOKEN environment variable.") |
|
|
|
print(f"API Token: {TOKEN[:5]}...{TOKEN[-5:]}") |
|
|
|
memory = deque(maxlen=10) |
|
|
|
async def test_api(): |
|
headers = {"Authorization": f"Bearer {TOKEN}"} |
|
async with aiohttp.ClientSession() as session: |
|
async with session.get("https://api-inference.huggingface.co/models/mistralai/Mistral-Nemo-Instruct-2407", headers=headers) as response: |
|
print(f"Test API response: {await response.text()}") |
|
|
|
async def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message="AI Assistant Role", |
|
max_tokens=512, |
|
temperature=0.7, |
|
top_p=0.95, |
|
): |
|
system_prefix = "System: Respond in the same language as the input (English, Korean, Chinese, Japanese, etc.)." |
|
full_system_message = f"{system_prefix}{system_message}" |
|
|
|
memory.append((message, None)) |
|
messages = [{"role": "system", "content": full_system_message}] |
|
for val in memory: |
|
if val[0]: |
|
messages.append({"role": "user", "content": val[0]}) |
|
if val[1]: |
|
messages.append({"role": "assistant", "content": val[1]}) |
|
|
|
headers = { |
|
"Authorization": f"Bearer {TOKEN}", |
|
"Content-Type": "application/json" |
|
} |
|
payload = { |
|
"model": "mistralai/Mistral-Nemo-Instruct-2407", |
|
"max_tokens": max_tokens, |
|
"temperature": temperature, |
|
"top_p": top_p, |
|
"messages": messages, |
|
"stream": True |
|
} |
|
|
|
try: |
|
async with aiohttp.ClientSession() as session: |
|
async with session.post("https://api-inference.huggingface.co/v1/chat/completions", headers=headers, json=payload) as response: |
|
print(f"Response status: {response.status}") |
|
if response.status != 200: |
|
error_text = await response.text() |
|
print(f"Error response: {error_text}") |
|
yield "An API response error occurred. Please try again." |
|
return |
|
|
|
response_text = "" |
|
async for chunk in response.content: |
|
if chunk: |
|
try: |
|
chunk_data = chunk.decode('utf-8') |
|
response_json = json.loads(chunk_data) |
|
if "choices" in response_json: |
|
content = response_json["choices"][0]["message"]["content"] |
|
response_text += content |
|
yield response_text |
|
except json.JSONDecodeError: |
|
continue |
|
|
|
if not response_text: |
|
yield "I apologize, but I couldn't generate a response. Please try again." |
|
except Exception as e: |
|
print(f"Exception occurred: {str(e)}") |
|
yield f"An error occurred: {str(e)}" |
|
|
|
memory[-1] = (message, response_text) |
|
|
|
async def chat(message, history, system_message, max_tokens, temperature, top_p): |
|
response = "" |
|
async for chunk in respond(message, history, system_message, max_tokens, temperature, top_p): |
|
response = chunk |
|
yield response |
|
|
|
theme = "Nymbo/Nymbo_Theme" |
|
|
|
css = """ |
|
footer { |
|
visibility: hidden; |
|
} |
|
""" |
|
|
|
demo = gr.ChatInterface( |
|
css=css, |
|
fn=chat, |
|
theme=theme, |
|
additional_inputs=[ |
|
gr.Textbox(value="AI Assistant Role", label="System message"), |
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), |
|
] |
|
) |
|
|
|
if __name__ == "__main__": |
|
import asyncio |
|
asyncio.run(test_api()) |
|
demo.queue().launch(max_threads=20) |