ofai-kai-backup / app.py
seawolf2357's picture
Update app.py
e8bcde6 verified
raw
history blame
2.9 kB
import gradio as gr
import requests
import os
import json
from collections import deque
import asyncio
import aiohttp
TOKEN = os.getenv("HUGGINGFACE_API_TOKEN")
if not TOKEN:
raise ValueError("API token is not set. Please set the HUGGINGFACE_API_TOKEN environment variable.")
memory = deque(maxlen=10)
async def respond(
message,
history: list[tuple[str, str]],
system_message="AI Assistant Role",
max_tokens=512,
temperature=0.7,
top_p=0.95,
):
system_prefix = "System: ์ž…๋ ฅ์–ด์˜ ์–ธ์–ด(์˜์–ด, ํ•œ๊ตญ์–ด, ์ค‘๊ตญ์–ด, ์ผ๋ณธ์–ด ๋“ฑ)์— ๋”ฐ๋ผ ๋™์ผํ•œ ์–ธ์–ด๋กœ ๋‹ต๋ณ€ํ•˜๋ผ."
full_system_message = f"{system_prefix}{system_message}"
memory.append((message, None))
messages = [{"role": "system", "content": full_system_message}]
for val in memory:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
headers = {
"Authorization": f"Bearer {TOKEN}",
"Content-Type": "application/json"
}
payload = {
"model": "mistralai/Mistral-Nemo-Instruct-2407",
"max_tokens": max_tokens,
"temperature": temperature,
"top_p": top_p,
"messages": messages,
"stream": True
}
async with aiohttp.ClientSession() as session:
async with session.post("https://api-inference.huggingface.co/v1/chat/completions", headers=headers, json=payload) as response:
partial_words = ""
async for chunk in response.content:
if chunk:
chunk_data = chunk.decode('utf-8')
if chunk_data.startswith("data: "):
chunk_data = chunk_data[6:]
try:
response_json = json.loads(chunk_data)
if "choices" in response_json:
delta = response_json["choices"][0].get("delta", {})
if "content" in delta:
content = delta["content"]
partial_words += content
yield partial_words
except json.JSONDecodeError:
continue
theme = "Nymbo/Nymbo_Theme"
css = """
footer {
visibility: hidden;
}
"""
demo = gr.ChatInterface(
css=css,
fn=respond,
theme=theme,
additional_inputs=[
gr.Textbox(value="AI Assistant Role", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
]
)
if __name__ == "__main__":
demo.queue().launch(max_threads=20)