Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -19,37 +19,53 @@ css = """
|
|
19 |
}
|
20 |
"""
|
21 |
|
|
|
22 |
if torch.cuda.is_available():
|
23 |
power_device = "GPU"
|
24 |
-
device = "cuda"
|
|
|
25 |
else:
|
26 |
power_device = "CPU"
|
27 |
device = "cpu"
|
28 |
-
|
29 |
|
30 |
huggingface_token = os.getenv("HUGGINFACE_TOKEN")
|
31 |
|
32 |
model_path = snapshot_download(
|
33 |
-
repo_id="black-forest-labs/FLUX.1-dev",
|
34 |
-
repo_type="model",
|
35 |
ignore_patterns=["*.md", "*..gitattributes"],
|
36 |
-
local_dir="FLUX.1-dev",
|
37 |
-
token=huggingface_token,
|
38 |
)
|
39 |
|
40 |
-
|
41 |
-
# Load pipeline
|
42 |
controlnet = FluxControlNetModel.from_pretrained(
|
43 |
-
"jasperai/Flux.1-dev-Controlnet-Upscaler",
|
|
|
44 |
).to(device)
|
|
|
45 |
pipe = FluxControlNetPipeline.from_pretrained(
|
46 |
-
model_path,
|
|
|
|
|
47 |
)
|
48 |
pipe.to(device)
|
49 |
|
|
|
|
|
|
|
|
|
50 |
MAX_SEED = 1000000
|
51 |
-
MAX_PIXEL_BUDGET = 1024 * 1024
|
52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
def process_input(input_image, upscale_factor, **kwargs):
|
55 |
w, h = input_image.size
|
@@ -80,8 +96,7 @@ def process_input(input_image, upscale_factor, **kwargs):
|
|
80 |
|
81 |
return input_image.resize((w, h)), w_original, h_original, was_resized
|
82 |
|
83 |
-
|
84 |
-
@spaces.GPU#(duration=42)
|
85 |
def infer(
|
86 |
seed,
|
87 |
randomize_seed,
|
@@ -91,46 +106,60 @@ def infer(
|
|
91 |
controlnet_conditioning_scale,
|
92 |
progress=gr.Progress(track_tqdm=True),
|
93 |
):
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
image = pipe(
|
109 |
-
prompt="",
|
110 |
-
control_image=control_image,
|
111 |
-
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
112 |
-
num_inference_steps=num_inference_steps,
|
113 |
-
guidance_scale=3.5,
|
114 |
-
height=control_image.size[1],
|
115 |
-
width=control_image.size[0],
|
116 |
-
generator=generator,
|
117 |
-
).images[0]
|
118 |
-
|
119 |
-
if was_resized:
|
120 |
-
gr.Info(
|
121 |
-
f"Resizing output image to targeted {w_original * upscale_factor}x{h_original * upscale_factor} size."
|
122 |
)
|
123 |
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
|
|
|
|
|
|
|
|
|
130 |
|
131 |
-
|
132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
|
|
134 |
with gr.Row():
|
135 |
run_button = gr.Button(value="Run")
|
136 |
|
@@ -148,9 +177,9 @@ with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
|
|
148 |
upscale_factor = gr.Slider(
|
149 |
label="Upscale Factor",
|
150 |
minimum=1,
|
151 |
-
maximum=4
|
152 |
step=1,
|
153 |
-
value=
|
154 |
)
|
155 |
controlnet_conditioning_scale = gr.Slider(
|
156 |
label="Controlnet Conditioning Scale",
|
@@ -174,9 +203,8 @@ with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
|
|
174 |
|
175 |
examples = gr.Examples(
|
176 |
examples=[
|
177 |
-
[42, False, "z1.webp", 28,
|
178 |
-
[42, False, "z2.webp", 28,
|
179 |
-
|
180 |
],
|
181 |
inputs=[
|
182 |
seed,
|
@@ -204,7 +232,6 @@ with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
|
|
204 |
],
|
205 |
outputs=result,
|
206 |
show_api=False,
|
207 |
-
# show_progress="minimal",
|
208 |
)
|
209 |
|
210 |
-
demo.queue().launch(share=False)
|
|
|
19 |
}
|
20 |
"""
|
21 |
|
22 |
+
# Device and dtype setup
|
23 |
if torch.cuda.is_available():
|
24 |
power_device = "GPU"
|
25 |
+
device = "cuda"
|
26 |
+
dtype = torch.bfloat16
|
27 |
else:
|
28 |
power_device = "CPU"
|
29 |
device = "cpu"
|
30 |
+
dtype = torch.float32
|
31 |
|
32 |
huggingface_token = os.getenv("HUGGINFACE_TOKEN")
|
33 |
|
34 |
model_path = snapshot_download(
|
35 |
+
repo_id="black-forest-labs/FLUX.1-dev",
|
36 |
+
repo_type="model",
|
37 |
ignore_patterns=["*.md", "*..gitattributes"],
|
38 |
+
local_dir="FLUX.1-dev",
|
39 |
+
token=huggingface_token,
|
40 |
)
|
41 |
|
42 |
+
# Load pipeline with memory optimizations
|
|
|
43 |
controlnet = FluxControlNetModel.from_pretrained(
|
44 |
+
"jasperai/Flux.1-dev-Controlnet-Upscaler",
|
45 |
+
torch_dtype=dtype
|
46 |
).to(device)
|
47 |
+
|
48 |
pipe = FluxControlNetPipeline.from_pretrained(
|
49 |
+
model_path,
|
50 |
+
controlnet=controlnet,
|
51 |
+
torch_dtype=dtype
|
52 |
)
|
53 |
pipe.to(device)
|
54 |
|
55 |
+
# Enable memory optimizations
|
56 |
+
pipe.enable_model_cpu_offload()
|
57 |
+
pipe.enable_attention_slicing()
|
58 |
+
|
59 |
MAX_SEED = 1000000
|
60 |
+
MAX_PIXEL_BUDGET = 512 * 512 # Reduced from 1024 * 1024
|
61 |
|
62 |
+
def check_resources():
|
63 |
+
if torch.cuda.is_available():
|
64 |
+
gpu_memory = torch.cuda.get_device_properties(0).total_memory
|
65 |
+
memory_allocated = torch.cuda.memory_allocated(0)
|
66 |
+
if memory_allocated/gpu_memory > 0.9: # 90% threshold
|
67 |
+
return False
|
68 |
+
return True
|
69 |
|
70 |
def process_input(input_image, upscale_factor, **kwargs):
|
71 |
w, h = input_image.size
|
|
|
96 |
|
97 |
return input_image.resize((w, h)), w_original, h_original, was_resized
|
98 |
|
99 |
+
@spaces.GPU
|
|
|
100 |
def infer(
|
101 |
seed,
|
102 |
randomize_seed,
|
|
|
106 |
controlnet_conditioning_scale,
|
107 |
progress=gr.Progress(track_tqdm=True),
|
108 |
):
|
109 |
+
try:
|
110 |
+
if not check_resources():
|
111 |
+
gr.Warning("System resources are running low. Try reducing parameters.")
|
112 |
+
return None
|
113 |
+
|
114 |
+
if device == "cuda":
|
115 |
+
torch.cuda.empty_cache()
|
116 |
+
|
117 |
+
if randomize_seed:
|
118 |
+
seed = random.randint(0, MAX_SEED)
|
119 |
+
|
120 |
+
true_input_image = input_image
|
121 |
+
input_image, w_original, h_original, was_resized = process_input(
|
122 |
+
input_image, upscale_factor
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
)
|
124 |
|
125 |
+
# rescale with upscale factor
|
126 |
+
w, h = input_image.size
|
127 |
+
control_image = input_image.resize((w * upscale_factor, h * upscale_factor))
|
128 |
+
|
129 |
+
generator = torch.Generator().manual_seed(seed)
|
130 |
+
|
131 |
+
gr.Info("Upscaling image...")
|
132 |
+
image = pipe(
|
133 |
+
prompt="",
|
134 |
+
control_image=control_image,
|
135 |
+
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
136 |
+
num_inference_steps=num_inference_steps,
|
137 |
+
guidance_scale=3.5,
|
138 |
+
height=control_image.size[1],
|
139 |
+
width=control_image.size[0],
|
140 |
+
generator=generator,
|
141 |
+
).images[0]
|
142 |
+
|
143 |
+
if was_resized:
|
144 |
+
gr.Info(
|
145 |
+
f"Resizing output image to targeted {w_original * upscale_factor}x{h_original * upscale_factor} size."
|
146 |
+
)
|
147 |
|
148 |
+
# resize to target desired size
|
149 |
+
image = image.resize((w_original * upscale_factor, h_original * upscale_factor))
|
150 |
+
image.save("output.jpg")
|
151 |
+
return [true_input_image, image, seed]
|
152 |
|
153 |
+
except RuntimeError as e:
|
154 |
+
if "out of memory" in str(e):
|
155 |
+
gr.Warning("Not enough GPU memory. Try reducing the upscale factor or image size.")
|
156 |
+
return None
|
157 |
+
raise e
|
158 |
+
except Exception as e:
|
159 |
+
gr.Error(f"An error occurred: {str(e)}")
|
160 |
+
return None
|
161 |
|
162 |
+
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
|
163 |
with gr.Row():
|
164 |
run_button = gr.Button(value="Run")
|
165 |
|
|
|
177 |
upscale_factor = gr.Slider(
|
178 |
label="Upscale Factor",
|
179 |
minimum=1,
|
180 |
+
maximum=2, # Reduced from 4
|
181 |
step=1,
|
182 |
+
value=2, # Reduced default
|
183 |
)
|
184 |
controlnet_conditioning_scale = gr.Slider(
|
185 |
label="Controlnet Conditioning Scale",
|
|
|
203 |
|
204 |
examples = gr.Examples(
|
205 |
examples=[
|
206 |
+
[42, False, "z1.webp", 28, 2, 0.6], # Updated upscale factor
|
207 |
+
[42, False, "z2.webp", 28, 2, 0.6], # Updated upscale factor
|
|
|
208 |
],
|
209 |
inputs=[
|
210 |
seed,
|
|
|
232 |
],
|
233 |
outputs=result,
|
234 |
show_api=False,
|
|
|
235 |
)
|
236 |
|
237 |
+
demo.queue().launch(share=False)
|