Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,114 +1,210 @@
|
|
1 |
-
import
|
2 |
-
import
|
3 |
-
|
|
|
4 |
import gradio as gr
|
|
|
5 |
import spaces
|
6 |
-
import
|
7 |
-
import
|
8 |
-
from
|
9 |
-
|
10 |
-
|
11 |
-
from
|
12 |
-
from stable_audio_tools.inference.generation import generate_diffusion_cond
|
13 |
-
|
14 |
-
# Load the model outside of the GPU-decorated function
|
15 |
-
def load_model():
|
16 |
-
print("Loading model...")
|
17 |
-
model, model_config = get_pretrained_model("stabilityai/stable-audio-open-1.0")
|
18 |
-
print("Model loaded successfully.")
|
19 |
-
return model, model_config
|
20 |
-
|
21 |
-
# 번역 모델 로드
|
22 |
-
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
|
23 |
-
|
24 |
-
# Function to set up, generate, and process the audio
|
25 |
-
@spaces.GPU(duration=120) # Allocate GPU only when this function is called
|
26 |
-
def generate_audio(prompt, seconds_total=30, steps=100, cfg_scale=7):
|
27 |
-
print(f"Original Prompt: {prompt}")
|
28 |
-
|
29 |
-
# 한글 텍스트를 영어로 번역
|
30 |
-
translated_prompt = translator(prompt, max_length=512)[0]['translation_text']
|
31 |
-
print(f"Translated Prompt: {translated_prompt}")
|
32 |
-
|
33 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
34 |
-
print(f"Using device: {device}")
|
35 |
-
|
36 |
-
# Fetch the Hugging Face token from the environment variable
|
37 |
-
hf_token = os.getenv('HF_TOKEN')
|
38 |
-
print(f"Hugging Face token: {hf_token}")
|
39 |
-
|
40 |
-
# Use pre-loaded model and configuration
|
41 |
-
model, model_config = load_model()
|
42 |
-
sample_rate = model_config["sample_rate"]
|
43 |
-
sample_size = model_config["sample_size"]
|
44 |
-
|
45 |
-
print(f"Sample rate: {sample_rate}, Sample size: {sample_size}")
|
46 |
-
|
47 |
-
model = model.to(device)
|
48 |
-
print("Model moved to device.")
|
49 |
-
|
50 |
-
# Set up text and timing conditioning
|
51 |
-
conditioning = [{
|
52 |
-
"prompt": translated_prompt,
|
53 |
-
"seconds_start": 0,
|
54 |
-
"seconds_total": seconds_total
|
55 |
-
}]
|
56 |
-
print(f"Conditioning: {conditioning}")
|
57 |
-
|
58 |
-
# Generate stereo audio
|
59 |
-
print("Generating audio...")
|
60 |
-
output = generate_diffusion_cond(
|
61 |
-
model,
|
62 |
-
steps=steps,
|
63 |
-
cfg_scale=cfg_scale,
|
64 |
-
conditioning=conditioning,
|
65 |
-
sample_size=sample_size,
|
66 |
-
sigma_min=0.3,
|
67 |
-
sigma_max=500,
|
68 |
-
sampler_type="dpmpp-3m-sde",
|
69 |
-
device=device
|
70 |
-
)
|
71 |
-
print("Audio generated.")
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
76 |
|
77 |
-
|
78 |
-
|
79 |
-
|
|
|
|
|
|
|
80 |
|
81 |
-
# Generate a unique filename for the output
|
82 |
-
unique_filename = f"output_{uuid.uuid4().hex}.wav"
|
83 |
-
print(f"Saving audio to file: {unique_filename}")
|
84 |
|
85 |
-
|
86 |
-
torchaudio.save(unique_filename, output, sample_rate)
|
87 |
-
print(f"Audio saved: {unique_filename}")
|
88 |
|
89 |
-
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
-
css = """
|
93 |
-
footer {
|
94 |
-
visibility: hidden;
|
95 |
-
}
|
96 |
-
"""
|
97 |
|
98 |
-
#
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
gr.Slider(10, 150, value=100, step=10, label="디퓨전 단계 수"),
|
105 |
-
gr.Slider(1, 15, value=7, step=0.1, label="CFG 스케일")
|
106 |
-
],
|
107 |
-
outputs=gr.Audio(type="filepath", label="생성된 오디오"),
|
108 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
-
|
111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
-
|
114 |
-
interface.launch()
|
|
|
1 |
+
import logging
|
2 |
+
import random
|
3 |
+
import warnings
|
4 |
+
import os
|
5 |
import gradio as gr
|
6 |
+
import numpy as np
|
7 |
import spaces
|
8 |
+
import torch
|
9 |
+
from diffusers import FluxControlNetModel
|
10 |
+
from diffusers.pipelines import FluxControlNetPipeline
|
11 |
+
from gradio_imageslider import ImageSlider
|
12 |
+
from PIL import Image
|
13 |
+
from huggingface_hub import snapshot_download
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
css = """
|
16 |
+
#col-container {
|
17 |
+
margin: 0 auto;
|
18 |
+
max-width: 512px;
|
19 |
+
}
|
20 |
+
"""
|
21 |
|
22 |
+
if torch.cuda.is_available():
|
23 |
+
power_device = "GPU"
|
24 |
+
device = "cuda"
|
25 |
+
else:
|
26 |
+
power_device = "CPU"
|
27 |
+
device = "cpu"
|
28 |
|
|
|
|
|
|
|
29 |
|
30 |
+
huggingface_token = os.getenv("HUGGINFACE_TOKEN")
|
|
|
|
|
31 |
|
32 |
+
model_path = snapshot_download(
|
33 |
+
repo_id="black-forest-labs/FLUX.1-dev",
|
34 |
+
repo_type="model",
|
35 |
+
ignore_patterns=["*.md", "*..gitattributes"],
|
36 |
+
local_dir="FLUX.1-dev",
|
37 |
+
token=huggingface_token, # type a new token-id.
|
38 |
+
)
|
39 |
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
+
# Load pipeline
|
42 |
+
controlnet = FluxControlNetModel.from_pretrained(
|
43 |
+
"jasperai/Flux.1-dev-Controlnet-Upscaler", torch_dtype=torch.bfloat16
|
44 |
+
).to(device)
|
45 |
+
pipe = FluxControlNetPipeline.from_pretrained(
|
46 |
+
model_path, controlnet=controlnet, torch_dtype=torch.bfloat16
|
|
|
|
|
|
|
|
|
47 |
)
|
48 |
+
pipe.to(device)
|
49 |
+
|
50 |
+
MAX_SEED = 1000000
|
51 |
+
MAX_PIXEL_BUDGET = 1024 * 1024
|
52 |
+
|
53 |
+
|
54 |
+
def process_input(input_image, upscale_factor, **kwargs):
|
55 |
+
w, h = input_image.size
|
56 |
+
w_original, h_original = w, h
|
57 |
+
aspect_ratio = w / h
|
58 |
+
|
59 |
+
was_resized = False
|
60 |
+
|
61 |
+
if w * h * upscale_factor**2 > MAX_PIXEL_BUDGET:
|
62 |
+
warnings.warn(
|
63 |
+
f"Requested output image is too large ({w * upscale_factor}x{h * upscale_factor}). Resizing to ({int(aspect_ratio * MAX_PIXEL_BUDGET ** 0.5 // upscale_factor), int(MAX_PIXEL_BUDGET ** 0.5 // aspect_ratio // upscale_factor)}) pixels."
|
64 |
+
)
|
65 |
+
gr.Info(
|
66 |
+
f"Requested output image is too large ({w * upscale_factor}x{h * upscale_factor}). Resizing input to ({int(aspect_ratio * MAX_PIXEL_BUDGET ** 0.5 // upscale_factor), int(MAX_PIXEL_BUDGET ** 0.5 // aspect_ratio // upscale_factor)}) pixels budget."
|
67 |
+
)
|
68 |
+
input_image = input_image.resize(
|
69 |
+
(
|
70 |
+
int(aspect_ratio * MAX_PIXEL_BUDGET**0.5 // upscale_factor),
|
71 |
+
int(MAX_PIXEL_BUDGET**0.5 // aspect_ratio // upscale_factor),
|
72 |
+
)
|
73 |
+
)
|
74 |
+
was_resized = True
|
75 |
+
|
76 |
+
# resize to multiple of 8
|
77 |
+
w, h = input_image.size
|
78 |
+
w = w - w % 8
|
79 |
+
h = h - h % 8
|
80 |
+
|
81 |
+
return input_image.resize((w, h)), w_original, h_original, was_resized
|
82 |
+
|
83 |
+
|
84 |
+
@spaces.GPU#(duration=42)
|
85 |
+
def infer(
|
86 |
+
seed,
|
87 |
+
randomize_seed,
|
88 |
+
input_image,
|
89 |
+
num_inference_steps,
|
90 |
+
upscale_factor,
|
91 |
+
controlnet_conditioning_scale,
|
92 |
+
progress=gr.Progress(track_tqdm=True),
|
93 |
+
):
|
94 |
+
if randomize_seed:
|
95 |
+
seed = random.randint(0, MAX_SEED)
|
96 |
+
true_input_image = input_image
|
97 |
+
input_image, w_original, h_original, was_resized = process_input(
|
98 |
+
input_image, upscale_factor
|
99 |
+
)
|
100 |
+
|
101 |
+
# rescale with upscale factor
|
102 |
+
w, h = input_image.size
|
103 |
+
control_image = input_image.resize((w * upscale_factor, h * upscale_factor))
|
104 |
+
|
105 |
+
generator = torch.Generator().manual_seed(seed)
|
106 |
+
|
107 |
+
gr.Info("Upscaling image...")
|
108 |
+
image = pipe(
|
109 |
+
prompt="",
|
110 |
+
control_image=control_image,
|
111 |
+
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
112 |
+
num_inference_steps=num_inference_steps,
|
113 |
+
guidance_scale=3.5,
|
114 |
+
height=control_image.size[1],
|
115 |
+
width=control_image.size[0],
|
116 |
+
generator=generator,
|
117 |
+
).images[0]
|
118 |
+
|
119 |
+
if was_resized:
|
120 |
+
gr.Info(
|
121 |
+
f"Resizing output image to targeted {w_original * upscale_factor}x{h_original * upscale_factor} size."
|
122 |
+
)
|
123 |
+
|
124 |
+
# resize to target desired size
|
125 |
+
image = image.resize((w_original * upscale_factor, h_original * upscale_factor))
|
126 |
+
image.save("output.jpg")
|
127 |
+
# convert to numpy
|
128 |
+
return [true_input_image, image, seed]
|
129 |
+
|
130 |
+
|
131 |
+
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
|
132 |
+
|
133 |
+
|
134 |
+
with gr.Row():
|
135 |
+
run_button = gr.Button(value="Run")
|
136 |
+
|
137 |
+
with gr.Row():
|
138 |
+
with gr.Column(scale=4):
|
139 |
+
input_im = gr.Image(label="Input Image", type="pil")
|
140 |
+
with gr.Column(scale=1):
|
141 |
+
num_inference_steps = gr.Slider(
|
142 |
+
label="Number of Inference Steps",
|
143 |
+
minimum=8,
|
144 |
+
maximum=50,
|
145 |
+
step=1,
|
146 |
+
value=28,
|
147 |
+
)
|
148 |
+
upscale_factor = gr.Slider(
|
149 |
+
label="Upscale Factor",
|
150 |
+
minimum=1,
|
151 |
+
maximum=4,
|
152 |
+
step=1,
|
153 |
+
value=4,
|
154 |
+
)
|
155 |
+
controlnet_conditioning_scale = gr.Slider(
|
156 |
+
label="Controlnet Conditioning Scale",
|
157 |
+
minimum=0.1,
|
158 |
+
maximum=1.5,
|
159 |
+
step=0.1,
|
160 |
+
value=0.6,
|
161 |
+
)
|
162 |
+
seed = gr.Slider(
|
163 |
+
label="Seed",
|
164 |
+
minimum=0,
|
165 |
+
maximum=MAX_SEED,
|
166 |
+
step=1,
|
167 |
+
value=42,
|
168 |
+
)
|
169 |
+
|
170 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
171 |
+
|
172 |
+
with gr.Row():
|
173 |
+
result = ImageSlider(label="Input / Output", type="pil", interactive=True)
|
174 |
+
|
175 |
+
examples = gr.Examples(
|
176 |
+
examples=[
|
177 |
+
[42, False, "z1.webp", 28, 4, 0.6],
|
178 |
+
[42, False, "z2.webp", 28, 4, 0.6],
|
179 |
+
|
180 |
+
],
|
181 |
+
inputs=[
|
182 |
+
seed,
|
183 |
+
randomize_seed,
|
184 |
+
input_im,
|
185 |
+
num_inference_steps,
|
186 |
+
upscale_factor,
|
187 |
+
controlnet_conditioning_scale,
|
188 |
+
],
|
189 |
+
fn=infer,
|
190 |
+
outputs=result,
|
191 |
+
cache_examples="lazy",
|
192 |
+
)
|
193 |
|
194 |
+
gr.on(
|
195 |
+
[run_button.click],
|
196 |
+
fn=infer,
|
197 |
+
inputs=[
|
198 |
+
seed,
|
199 |
+
randomize_seed,
|
200 |
+
input_im,
|
201 |
+
num_inference_steps,
|
202 |
+
upscale_factor,
|
203 |
+
controlnet_conditioning_scale,
|
204 |
+
],
|
205 |
+
outputs=result,
|
206 |
+
show_api=False,
|
207 |
+
# show_progress="minimal",
|
208 |
+
)
|
209 |
|
210 |
+
demo.queue().launch(share=False)
|
|