flx-pulid / pulid /utils.py
邬彦泽
1
aa8012e
import importlib
import os
import random
import cv2
import numpy as np
import torch
import torch.nn.functional as F
from transformers import PretrainedConfig
def seed_everything(seed):
os.environ["PL_GLOBAL_SEED"] = str(seed)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def is_torch2_available():
return hasattr(F, "scaled_dot_product_attention")
def instantiate_from_config(config):
if "target" not in config:
if config == '__is_first_stage__' or config == "__is_unconditional__":
return None
raise KeyError("Expected key `target` to instantiate.")
return get_obj_from_str(config["target"])(**config.get("params", {}))
def get_obj_from_str(string, reload=False):
module, cls = string.rsplit(".", 1)
if reload:
module_imp = importlib.import_module(module)
importlib.reload(module_imp)
return getattr(importlib.import_module(module, package=None), cls)
def drop_seq_token(seq, drop_rate=0.5):
idx = torch.randperm(seq.size(1))
num_keep_tokens = int(len(idx) * (1 - drop_rate))
idx = idx[:num_keep_tokens]
seq = seq[:, idx]
return seq
def import_model_class_from_model_name_or_path(
pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder"
):
text_encoder_config = PretrainedConfig.from_pretrained(
pretrained_model_name_or_path, subfolder=subfolder, revision=revision
)
model_class = text_encoder_config.architectures[0]
if model_class == "CLIPTextModel":
from transformers import CLIPTextModel
return CLIPTextModel
elif model_class == "CLIPTextModelWithProjection": # noqa RET505
from transformers import CLIPTextModelWithProjection
return CLIPTextModelWithProjection
else:
raise ValueError(f"{model_class} is not supported.")
def resize_numpy_image_long(image, resize_long_edge=768):
h, w = image.shape[:2]
if max(h, w) <= resize_long_edge:
return image
k = resize_long_edge / max(h, w)
h = int(h * k)
w = int(w * k)
image = cv2.resize(image, (w, h), interpolation=cv2.INTER_LANCZOS4)
return image