|
import os |
|
import re |
|
import time |
|
from dataclasses import dataclass |
|
from glob import iglob |
|
|
|
import torch |
|
from einops import rearrange |
|
from fire import Fire |
|
from PIL import ExifTags, Image |
|
from transformers import pipeline |
|
|
|
from flux.sampling import denoise, get_noise, get_schedule, prepare, unpack |
|
from flux.util import ( |
|
configs, |
|
load_ae, |
|
load_clip, |
|
load_flow_model, |
|
load_t5, |
|
) |
|
|
|
NSFW_THRESHOLD = 0.85 |
|
|
|
|
|
@dataclass |
|
class SamplingOptions: |
|
prompt: str |
|
width: int |
|
height: int |
|
num_steps: int |
|
guidance: float |
|
seed: int |
|
|
|
|
|
def parse_prompt(options: SamplingOptions) -> SamplingOptions: |
|
user_question = "Next prompt (write /h for help, /q to quit and leave empty to repeat):\n" |
|
usage = ( |
|
"Usage: Either write your prompt directly, leave this field empty " |
|
"to repeat the prompt or write a command starting with a slash:\n" |
|
"- '/w <width>' will set the width of the generated image\n" |
|
"- '/h <height>' will set the height of the generated image\n" |
|
"- '/s <seed>' sets the next seed\n" |
|
"- '/g <guidance>' sets the guidance (flux-dev only)\n" |
|
"- '/n <steps>' sets the number of steps\n" |
|
"- '/q' to quit" |
|
) |
|
|
|
while (prompt := input(user_question)).startswith("/"): |
|
if prompt.startswith("/w"): |
|
if prompt.count(" ") != 1: |
|
print(f"Got invalid command '{prompt}'\n{usage}") |
|
continue |
|
_, width = prompt.split() |
|
options.width = 16 * (int(width) // 16) |
|
print( |
|
f"Setting resolution to {options.width} x {options.height} " |
|
f"({options.height * options.width / 1e6:.2f}MP)" |
|
) |
|
elif prompt.startswith("/h"): |
|
if prompt.count(" ") != 1: |
|
print(f"Got invalid command '{prompt}'\n{usage}") |
|
continue |
|
_, height = prompt.split() |
|
options.height = 16 * (int(height) // 16) |
|
print( |
|
f"Setting resolution to {options.width} x {options.height} " |
|
f"({options.height * options.width / 1e6:.2f}MP)" |
|
) |
|
elif prompt.startswith("/g"): |
|
if prompt.count(" ") != 1: |
|
print(f"Got invalid command '{prompt}'\n{usage}") |
|
continue |
|
_, guidance = prompt.split() |
|
options.guidance = float(guidance) |
|
print(f"Setting guidance to {options.guidance}") |
|
elif prompt.startswith("/s"): |
|
if prompt.count(" ") != 1: |
|
print(f"Got invalid command '{prompt}'\n{usage}") |
|
continue |
|
_, seed = prompt.split() |
|
options.seed = int(seed) |
|
print(f"Setting seed to {options.seed}") |
|
elif prompt.startswith("/n"): |
|
if prompt.count(" ") != 1: |
|
print(f"Got invalid command '{prompt}'\n{usage}") |
|
continue |
|
_, steps = prompt.split() |
|
options.num_steps = int(steps) |
|
print(f"Setting seed to {options.num_steps}") |
|
elif prompt.startswith("/q"): |
|
print("Quitting") |
|
return None |
|
else: |
|
if not prompt.startswith("/h"): |
|
print(f"Got invalid command '{prompt}'\n{usage}") |
|
print(usage) |
|
if prompt != "": |
|
options.prompt = prompt |
|
return options |
|
|
|
|
|
@torch.inference_mode() |
|
def main( |
|
name: str = "flux-schnell", |
|
width: int = 1360, |
|
height: int = 768, |
|
seed: int = None, |
|
prompt: str = ( |
|
"a photo of a forest with mist swirling around the tree trunks. The word " |
|
'"FLUX" is painted over it in big, red brush strokes with visible texture' |
|
), |
|
device: str = "cuda" if torch.cuda.is_available() else "cpu", |
|
num_steps: int = None, |
|
loop: bool = False, |
|
guidance: float = 3.5, |
|
offload: bool = False, |
|
output_dir: str = "output", |
|
add_sampling_metadata: bool = True, |
|
): |
|
""" |
|
Sample the flux model. Either interactively (set `--loop`) or run for a |
|
single image. |
|
|
|
Args: |
|
name: Name of the model to load |
|
height: height of the sample in pixels (should be a multiple of 16) |
|
width: width of the sample in pixels (should be a multiple of 16) |
|
seed: Set a seed for sampling |
|
output_name: where to save the output image, `{idx}` will be replaced |
|
by the index of the sample |
|
prompt: Prompt used for sampling |
|
device: Pytorch device |
|
num_steps: number of sampling steps (default 4 for schnell, 50 for guidance distilled) |
|
loop: start an interactive session and sample multiple times |
|
guidance: guidance value used for guidance distillation |
|
add_sampling_metadata: Add the prompt to the image Exif metadata |
|
""" |
|
nsfw_classifier = pipeline("image-classification", model="Falconsai/nsfw_image_detection") |
|
|
|
if name not in configs: |
|
available = ", ".join(configs.keys()) |
|
raise ValueError(f"Got unknown model name: {name}, chose from {available}") |
|
|
|
torch_device = torch.device(device) |
|
if num_steps is None: |
|
num_steps = 4 if name == "flux-schnell" else 50 |
|
|
|
|
|
height = 16 * (height // 16) |
|
width = 16 * (width // 16) |
|
|
|
output_name = os.path.join(output_dir, "img_{idx}.jpg") |
|
if not os.path.exists(output_dir): |
|
os.makedirs(output_dir) |
|
idx = 0 |
|
else: |
|
fns = [fn for fn in iglob(output_name.format(idx="*")) if re.search(r"img_[0-9]\.jpg$", fn)] |
|
if len(fns) > 0: |
|
idx = max(int(fn.split("_")[-1].split(".")[0]) for fn in fns) + 1 |
|
else: |
|
idx = 0 |
|
|
|
|
|
t5 = load_t5(torch_device, max_length=256 if name == "flux-schnell" else 512) |
|
clip = load_clip(torch_device) |
|
model = load_flow_model(name, device="cpu" if offload else torch_device) |
|
ae = load_ae(name, device="cpu" if offload else torch_device) |
|
|
|
rng = torch.Generator(device="cpu") |
|
opts = SamplingOptions( |
|
prompt=prompt, |
|
width=width, |
|
height=height, |
|
num_steps=num_steps, |
|
guidance=guidance, |
|
seed=seed, |
|
) |
|
|
|
if loop: |
|
opts = parse_prompt(opts) |
|
|
|
while opts is not None: |
|
if opts.seed is None: |
|
opts.seed = rng.seed() |
|
print(f"Generating with seed {opts.seed}:\n{opts.prompt}") |
|
t0 = time.perf_counter() |
|
|
|
|
|
x = get_noise( |
|
1, |
|
opts.height, |
|
opts.width, |
|
device=torch_device, |
|
dtype=torch.bfloat16, |
|
seed=opts.seed, |
|
) |
|
opts.seed = None |
|
if offload: |
|
ae = ae.cpu() |
|
torch.cuda.empty_cache() |
|
t5, clip = t5.to(torch_device), clip.to(torch_device) |
|
inp = prepare(t5, clip, x, prompt=opts.prompt) |
|
timesteps = get_schedule(opts.num_steps, inp["img"].shape[1], shift=(name != "flux-schnell")) |
|
|
|
|
|
if offload: |
|
t5, clip = t5.cpu(), clip.cpu() |
|
torch.cuda.empty_cache() |
|
model = model.to(torch_device) |
|
|
|
|
|
x = denoise(model, **inp, timesteps=timesteps, guidance=opts.guidance) |
|
|
|
|
|
if offload: |
|
model.cpu() |
|
torch.cuda.empty_cache() |
|
ae.decoder.to(x.device) |
|
|
|
|
|
x = unpack(x.float(), opts.height, opts.width) |
|
with torch.autocast(device_type=torch_device.type, dtype=torch.bfloat16): |
|
x = ae.decode(x) |
|
t1 = time.perf_counter() |
|
|
|
fn = output_name.format(idx=idx) |
|
print(f"Done in {t1 - t0:.1f}s. Saving {fn}") |
|
|
|
x = x.clamp(-1, 1) |
|
|
|
x = rearrange(x[0], "c h w -> h w c") |
|
|
|
img = Image.fromarray((127.5 * (x + 1.0)).cpu().byte().numpy()) |
|
nsfw_score = [x["score"] for x in nsfw_classifier(img) if x["label"] == "nsfw"][0] |
|
|
|
if nsfw_score < NSFW_THRESHOLD: |
|
exif_data = Image.Exif() |
|
exif_data[ExifTags.Base.Software] = "AI generated;txt2img;flux" |
|
exif_data[ExifTags.Base.Make] = "Black Forest Labs" |
|
exif_data[ExifTags.Base.Model] = name |
|
if add_sampling_metadata: |
|
exif_data[ExifTags.Base.ImageDescription] = prompt |
|
img.save(fn, exif=exif_data, quality=95, subsampling=0) |
|
idx += 1 |
|
else: |
|
print("Your generated image may contain NSFW content.") |
|
|
|
if loop: |
|
print("-" * 80) |
|
opts = parse_prompt(opts) |
|
else: |
|
opts = None |
|
|
|
|
|
def app(): |
|
Fire(main) |
|
|
|
|
|
if __name__ == "__main__": |
|
app() |
|
|