|
import argparse, os, sys, glob, yaml, math, random |
|
sys.path.append('../') |
|
|
|
import datetime, time |
|
import numpy as np |
|
from omegaconf import OmegaConf |
|
from collections import OrderedDict |
|
from tqdm import trange, tqdm |
|
from einops import repeat |
|
from einops import rearrange, repeat |
|
from functools import partial |
|
import torch |
|
from pytorch_lightning import seed_everything |
|
|
|
from funcs import load_model_checkpoint, load_prompts, load_image_batch, get_filelist, save_videos, get_videos |
|
from funcs import batch_ddim_sampling |
|
from utils.utils import instantiate_from_config |
|
|
|
import peft |
|
import torchvision |
|
from transformers.utils import ContextManagers |
|
from transformers import AutoProcessor, AutoModel, AutoImageProcessor, AutoModelForObjectDetection, AutoModelForZeroShotObjectDetection |
|
from Core.aesthetic_scorer import AestheticScorerDiff |
|
from Core.actpred_scorer import ActPredScorer |
|
from Core.weather_scorer import WeatherScorer |
|
from Core.compression_scorer import JpegCompressionScorer, jpeg_compressibility |
|
import Core.prompts as prompts_file |
|
from hpsv2.src.open_clip import create_model_and_transforms, get_tokenizer |
|
import hpsv2 |
|
import bitsandbytes as bnb |
|
from accelerate import Accelerator |
|
from accelerate.logging import get_logger |
|
from accelerate.utils import gather_object |
|
import torch.distributed as dist |
|
import logging |
|
import gc |
|
from PIL import Image |
|
import io |
|
import albumentations as A |
|
from huggingface_hub import snapshot_download |
|
import cv2 |
|
|
|
|
|
|
|
|
|
logger = get_logger(__name__, log_level="INFO") |
|
|
|
def create_logging(logging, logger, accelerator): |
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
level=logging.INFO, |
|
) |
|
logger.info(accelerator.state, main_process_only=False) |
|
|
|
def create_output_folders(output_dir, run_name): |
|
out_dir = os.path.join(output_dir, run_name) |
|
os.makedirs(out_dir, exist_ok=True) |
|
os.makedirs(f"{out_dir}/samples", exist_ok=True) |
|
return out_dir |
|
|
|
def str2bool(v): |
|
if isinstance(v, bool): |
|
return v |
|
if v.lower() in ('yes', 'true', 't', 'y', '1'): |
|
return True |
|
elif v.lower() in ('no', 'false', 'f', 'n', '0'): |
|
return False |
|
else: |
|
raise argparse.ArgumentTypeError('Boolean value expected.') |
|
|
|
def get_parser(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--seed", type=int, default=20230211, help="seed for seed_everything") |
|
parser.add_argument("--mode", default="base", type=str, help="which kind of inference mode: {'base', 'i2v'}") |
|
parser.add_argument("--ckpt_path", type=str, default='VADER-VideoCrafter/checkpoints/base_512_v2/model.ckpt', help="checkpoint path") |
|
parser.add_argument("--config", type=str, default='VADER-VideoCrafter/configs/inference_t2v_512_v2.0.yaml', help="config (yaml) path") |
|
parser.add_argument("--savefps", type=str, default=10, help="video fps to generate") |
|
parser.add_argument("--n_samples", type=int, default=1, help="num of samples per prompt",) |
|
parser.add_argument("--ddim_steps", type=int, default=50, help="steps of ddim if positive, otherwise use DDPM",) |
|
parser.add_argument("--ddim_eta", type=float, default=1.0, help="eta for ddim sampling (0.0 yields deterministic sampling)",) |
|
parser.add_argument("--height", type=int, default=512, help="image height, in pixel space") |
|
parser.add_argument("--width", type=int, default=512, help="image width, in pixel space") |
|
parser.add_argument("--frames", type=int, default=-1, help="frames num to inference") |
|
parser.add_argument("--fps", type=int, default=24) |
|
parser.add_argument("--unconditional_guidance_scale", type=float, default=1.0, help="prompt classifier-free guidance") |
|
parser.add_argument("--unconditional_guidance_scale_temporal", type=float, default=None, help="temporal consistency guidance") |
|
|
|
parser.add_argument("--cond_input", type=str, default=None, help="data dir of conditional input") |
|
|
|
parser.add_argument("--lr", type=float, default=2e-4, help="learning rate") |
|
parser.add_argument("--val_batch_size", type=int, default=1, help="batch size for validation") |
|
parser.add_argument("--num_val_runs", type=int, default=1, help="total number of validation samples = num_val_runs * num_gpus * num_val_batch") |
|
parser.add_argument("--train_batch_size", type=int, default=1, help="batch size for training") |
|
parser.add_argument("--reward_fn", type=str, default="aesthetic", help="reward function: 'aesthetic', 'hps', 'aesthetic_hps', 'pick_score', 'rainy', 'snowy', 'objectDetection', 'actpred', 'compression'") |
|
parser.add_argument("--compression_model_path", type=str, default='assets/compression_reward.pt', help="compression model path") |
|
|
|
|
|
parser.add_argument("--target_object", type=str, default="book", help="target object for object detection reward function") |
|
parser.add_argument("--detector_model", type=str, default="yolos-base", help="object detection model", |
|
choices=["yolos-base", "yolos-tiny", "grounding-dino-base", "grounding-dino-tiny"]) |
|
parser.add_argument("--hps_version", type=str, default="v2.1", help="hps version: 'v2.0', 'v2.1'") |
|
parser.add_argument("--prompt_fn", type=str, default="hps_custom", help="prompt function") |
|
parser.add_argument("--nouns_file", type=str, default="simple_animals.txt", help="nouns file") |
|
parser.add_argument("--activities_file", type=str, default="activities.txt", help="activities file") |
|
parser.add_argument("--num_train_epochs", type=int, default=200, help="number of training epochs") |
|
parser.add_argument("--max_train_steps", type=int, default=10000, help="max training steps") |
|
parser.add_argument("--backprop_mode", type=str, default="last", help="backpropagation mode: 'last', 'rand', 'specific'") |
|
parser.add_argument("--gradient_accumulation_steps", type=int, default=1, help="gradient accumulation steps") |
|
parser.add_argument("--mixed_precision", type=str, default='fp16', help="mixed precision training: 'no', 'fp8', 'fp16', 'bf16'") |
|
parser.add_argument("--project_dir", type=str, default="VADER-VideoCrafter/project_dir", help="project directory") |
|
parser.add_argument("--validation_steps", type=int, default=1, help="The frequency of validation, e.g., 1 means validate every 1*accelerator.num_processes steps") |
|
parser.add_argument("--checkpointing_steps", type=int, default=1, help="The frequency of checkpointing") |
|
parser.add_argument("--wandb_entity", type=str, default="", help="wandb entity") |
|
parser.add_argument("--debug", type=str2bool, default=False, help="debug mode") |
|
parser.add_argument("--max_grad_norm", type=float, default=1.0, help="max gradient norm") |
|
parser.add_argument("--use_AdamW8bit", type=str2bool, default=False, help="use AdamW8bit optimizer") |
|
parser.add_argument("--is_sample_preview", type=str2bool, default=True, help="sample preview during training") |
|
parser.add_argument("--decode_frame", type=str, default="-1", help="decode frame: '-1', 'fml', 'all', 'alt'") |
|
parser.add_argument("--inference_only", type=str2bool, default=True, help="only do inference") |
|
parser.add_argument("--lora_ckpt_path", type=str, default=None, help="LoRA checkpoint path") |
|
parser.add_argument("--lora_rank", type=int, default=16, help="LoRA rank") |
|
|
|
return parser |
|
|
|
|
|
def aesthetic_loss_fn(aesthetic_target=None, |
|
grad_scale=0, |
|
device=None, |
|
torch_dtype=None): |
|
''' |
|
Args: |
|
aesthetic_target: float, the target value of the aesthetic score. it is 10 in this experiment |
|
grad_scale: float, the scale of the gradient. it is 0.1 in this experiment |
|
device: torch.device, the device to run the model. |
|
torch_dtype: torch.dtype, the data type of the model. |
|
|
|
Returns: |
|
loss_fn: function, the loss function of the aesthetic reward function. |
|
''' |
|
target_size = (224, 224) |
|
normalize = torchvision.transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073], |
|
std=[0.26862954, 0.26130258, 0.27577711]) |
|
|
|
scorer = AestheticScorerDiff(dtype=torch_dtype).to(device, dtype=torch_dtype) |
|
scorer.requires_grad_(False) |
|
|
|
def loss_fn(im_pix_un): |
|
im_pix = ((im_pix_un / 2) + 0.5).clamp(0, 1) |
|
im_pix = torchvision.transforms.Resize(target_size)(im_pix) |
|
im_pix = normalize(im_pix).to(im_pix_un.dtype) |
|
rewards = scorer(im_pix) |
|
if aesthetic_target is None: |
|
loss = -1 * rewards |
|
else: |
|
|
|
loss = abs(rewards - aesthetic_target) |
|
return loss.mean() * grad_scale, rewards.mean() |
|
return loss_fn |
|
|
|
|
|
def hps_loss_fn(inference_dtype=None, device=None, hps_version="v2.0"): |
|
''' |
|
Args: |
|
inference_dtype: torch.dtype, the data type of the model. |
|
device: torch.device, the device to run the model. |
|
hps_version: str, the version of the HPS model. It is "v2.0" or "v2.1" in this experiment. |
|
|
|
Returns: |
|
loss_fn: function, the loss function of the HPS reward function. |
|
''' |
|
model_name = "ViT-H-14" |
|
|
|
model, preprocess_train, preprocess_val = create_model_and_transforms( |
|
model_name, |
|
'laion2B-s32B-b79K', |
|
precision=inference_dtype, |
|
device=device, |
|
jit=False, |
|
force_quick_gelu=False, |
|
force_custom_text=False, |
|
force_patch_dropout=False, |
|
force_image_size=None, |
|
pretrained_image=False, |
|
image_mean=None, |
|
image_std=None, |
|
light_augmentation=True, |
|
aug_cfg={}, |
|
output_dict=True, |
|
with_score_predictor=False, |
|
with_region_predictor=False |
|
) |
|
|
|
tokenizer = get_tokenizer(model_name) |
|
|
|
if hps_version == "v2.0": |
|
checkpoint_path = f"{os.path.expanduser('~')}/.cache/huggingface/hub/models--xswu--HPSv2/snapshots/697403c78157020a1ae59d23f111aa58ced35b0a/HPS_v2_compressed.pt" |
|
else: |
|
checkpoint_path = f"{os.path.expanduser('~')}/.cache/huggingface/hub/models--xswu--HPSv2/snapshots/697403c78157020a1ae59d23f111aa58ced35b0a/HPS_v2.1_compressed.pt" |
|
|
|
hpsv2.score([], "", hps_version=hps_version) |
|
|
|
checkpoint = torch.load(checkpoint_path, map_location=device) |
|
model.load_state_dict(checkpoint['state_dict']) |
|
tokenizer = get_tokenizer(model_name) |
|
model = model.to(device, dtype=inference_dtype) |
|
model.eval() |
|
|
|
target_size = (224, 224) |
|
normalize = torchvision.transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073], |
|
std=[0.26862954, 0.26130258, 0.27577711]) |
|
|
|
def loss_fn(im_pix, prompts): |
|
im_pix = ((im_pix / 2) + 0.5).clamp(0, 1) |
|
x_var = torchvision.transforms.Resize(target_size)(im_pix) |
|
x_var = normalize(x_var).to(im_pix.dtype) |
|
caption = tokenizer(prompts) |
|
caption = caption.to(device) |
|
outputs = model(x_var, caption) |
|
image_features, text_features = outputs["image_features"], outputs["text_features"] |
|
logits = image_features @ text_features.T |
|
scores = torch.diagonal(logits) |
|
loss = 1.0 - scores |
|
return loss.mean(), scores.mean() |
|
|
|
return loss_fn |
|
|
|
def aesthetic_hps_loss_fn(aesthetic_target=None, |
|
grad_scale=0, |
|
inference_dtype=None, |
|
device=None, |
|
hps_version="v2.0"): |
|
''' |
|
Args: |
|
aesthetic_target: float, the target value of the aesthetic score. it is 10 in this experiment |
|
grad_scale: float, the scale of the gradient. it is 0.1 in this experiment |
|
inference_dtype: torch.dtype, the data type of the model. |
|
device: torch.device, the device to run the model. |
|
hps_version: str, the version of the HPS model. It is "v2.0" or "v2.1" in this experiment. |
|
|
|
Returns: |
|
loss_fn: function, the loss function of a combination of aesthetic and HPS reward function. |
|
''' |
|
|
|
model_name = "ViT-H-14" |
|
|
|
model, preprocess_train, preprocess_val = create_model_and_transforms( |
|
model_name, |
|
'laion2B-s32B-b79K', |
|
precision=inference_dtype, |
|
device=device, |
|
jit=False, |
|
force_quick_gelu=False, |
|
force_custom_text=False, |
|
force_patch_dropout=False, |
|
force_image_size=None, |
|
pretrained_image=False, |
|
image_mean=None, |
|
image_std=None, |
|
light_augmentation=True, |
|
aug_cfg={}, |
|
output_dict=True, |
|
with_score_predictor=False, |
|
with_region_predictor=False |
|
) |
|
|
|
|
|
|
|
if hps_version == "v2.0": |
|
checkpoint_path = f"{os.path.expanduser('~')}/.cache/huggingface/hub/models--xswu--HPSv2/snapshots/697403c78157020a1ae59d23f111aa58ced35b0a/HPS_v2_compressed.pt" |
|
else: |
|
checkpoint_path = f"{os.path.expanduser('~')}/.cache/huggingface/hub/models--xswu--HPSv2/snapshots/697403c78157020a1ae59d23f111aa58ced35b0a/HPS_v2.1_compressed.pt" |
|
|
|
hpsv2.score([], "", hps_version=hps_version) |
|
|
|
checkpoint = torch.load(checkpoint_path, map_location=device) |
|
model.load_state_dict(checkpoint['state_dict']) |
|
tokenizer = get_tokenizer(model_name) |
|
model = model.to(device, dtype=inference_dtype) |
|
model.eval() |
|
|
|
target_size = (224, 224) |
|
normalize = torchvision.transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073], |
|
std=[0.26862954, 0.26130258, 0.27577711]) |
|
|
|
scorer = AestheticScorerDiff(dtype=inference_dtype).to(device, dtype=inference_dtype) |
|
scorer.requires_grad_(False) |
|
|
|
def loss_fn(im_pix_un, prompts): |
|
|
|
im_pix = ((im_pix_un / 2) + 0.5).clamp(0, 1) |
|
im_pix = torchvision.transforms.Resize(target_size)(im_pix) |
|
im_pix = normalize(im_pix).to(im_pix_un.dtype) |
|
|
|
aesthetic_rewards = scorer(im_pix) |
|
if aesthetic_target is None: |
|
aesthetic_loss = -1 * aesthetic_rewards |
|
else: |
|
|
|
aesthetic_loss = abs(aesthetic_rewards - aesthetic_target) |
|
aesthetic_loss = aesthetic_loss.mean() * grad_scale |
|
aesthetic_rewards = aesthetic_rewards.mean() |
|
|
|
|
|
caption = tokenizer(prompts) |
|
caption = caption.to(device) |
|
outputs = model(im_pix, caption) |
|
image_features, text_features = outputs["image_features"], outputs["text_features"] |
|
logits = image_features @ text_features.T |
|
scores = torch.diagonal(logits) |
|
hps_loss = abs(1.0 - scores) |
|
hps_loss = hps_loss.mean() |
|
hps_rewards = scores.mean() |
|
|
|
loss = (1.5 * aesthetic_loss + hps_loss) /2 |
|
rewards = (aesthetic_rewards + 15 * hps_rewards) / 2 |
|
return loss, rewards |
|
|
|
return loss_fn |
|
|
|
def pick_score_loss_fn(inference_dtype=None, device=None): |
|
''' |
|
Args: |
|
inference_dtype: torch.dtype, the data type of the model. |
|
device: torch.device, the device to run the model. |
|
|
|
Returns: |
|
loss_fn: function, the loss function of the PickScore reward function. |
|
''' |
|
processor_name_or_path = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K" |
|
model_pretrained_name_or_path = "yuvalkirstain/PickScore_v1" |
|
processor = AutoProcessor.from_pretrained(processor_name_or_path, torch_dtype=inference_dtype) |
|
model = AutoModel.from_pretrained(model_pretrained_name_or_path, torch_dtype=inference_dtype).eval().to(device) |
|
model.requires_grad_(False) |
|
|
|
def loss_fn(im_pix_un, prompts): |
|
im_pix = ((im_pix_un / 2) + 0.5).clamp(0, 1) |
|
|
|
|
|
im_pix = im_pix * 255 |
|
|
|
if im_pix.shape[2] < im_pix.shape[3]: |
|
height = 224 |
|
width = im_pix.shape[3] * height // im_pix.shape[2] |
|
else: |
|
width = 224 |
|
height = im_pix.shape[2] * width // im_pix.shape[3] |
|
|
|
|
|
im_pix = torchvision.transforms.Resize((height, width), |
|
interpolation=torchvision.transforms.InterpolationMode.BICUBIC, |
|
antialias=True)(im_pix) |
|
im_pix = im_pix.permute(0, 2, 3, 1) |
|
|
|
startx = width//2 - (224//2) |
|
starty = height//2 - (224//2) |
|
im_pix = im_pix[:, starty:starty+224, startx:startx+224, :] |
|
|
|
im_pix = im_pix * 0.00392156862745098 |
|
mean = torch.tensor([0.48145466, 0.4578275, 0.40821073]).to(device) |
|
std = torch.tensor([0.26862954, 0.26130258, 0.27577711]).to(device) |
|
im_pix = (im_pix - mean) / std |
|
im_pix = im_pix.permute(0, 3, 1, 2) |
|
|
|
text_inputs = processor( |
|
text=prompts, |
|
padding=True, |
|
truncation=True, |
|
max_length=77, |
|
return_tensors="pt", |
|
).to(device) |
|
|
|
|
|
|
|
image_embs = model.get_image_features(pixel_values=im_pix) |
|
image_embs = image_embs / torch.norm(image_embs, dim=-1, keepdim=True) |
|
|
|
text_embs = model.get_text_features(**text_inputs) |
|
text_embs = text_embs / torch.norm(text_embs, dim=-1, keepdim=True) |
|
|
|
|
|
scores = model.logit_scale.exp() * (text_embs @ image_embs.T)[0] |
|
loss = abs(1.0 - scores / 100.0) |
|
return loss.mean(), scores.mean() |
|
|
|
return loss_fn |
|
|
|
def weather_loss_fn(inference_dtype=None, device=None, weather="rainy", target=None, grad_scale=0): |
|
''' |
|
Args: |
|
inference_dtype: torch.dtype, the data type of the model. |
|
device: torch.device, the device to run the model. |
|
weather: str, the weather condition. It is "rainy" or "snowy" in this experiment. |
|
target: float, the target value of the weather score. It is 1.0 in this experiment. |
|
grad_scale: float, the scale of the gradient. It is 1 in this experiment. |
|
|
|
Returns: |
|
loss_fn: function, the loss function of the weather reward function. |
|
''' |
|
if weather == "rainy": |
|
reward_model_path = "../assets/rainy_reward.pt" |
|
elif weather == "snowy": |
|
reward_model_path = "../assets/snowy_reward.pt" |
|
else: |
|
raise NotImplementedError |
|
scorer = WeatherScorer(dtype=inference_dtype, model_path=reward_model_path).to(device, dtype=inference_dtype) |
|
scorer.requires_grad_(False) |
|
scorer.eval() |
|
def loss_fn(im_pix_un): |
|
im_pix = ((im_pix_un + 1) / 2).clamp(0, 1) |
|
rewards = scorer(im_pix) |
|
|
|
if target is None: |
|
loss = rewards |
|
else: |
|
loss = abs(rewards - target) |
|
|
|
return loss.mean() * grad_scale, rewards.mean() |
|
return loss_fn |
|
|
|
def objectDetection_loss_fn(inference_dtype=None, device=None, targetObject='dog.', model_name='grounding-dino-base'): |
|
''' |
|
This reward function is used to remove the target object from the generated video. |
|
We use yolo-s-tiny model to detect the target object in the generated video. |
|
|
|
Args: |
|
inference_dtype: torch.dtype, the data type of the model. |
|
device: torch.device, the device to run the model. |
|
targetObject: str, the object to detect. It is "dog" in this experiment. |
|
|
|
Returns: |
|
loss_fn: function, the loss function of the object detection reward function. |
|
''' |
|
if model_name == "yolos-base": |
|
image_processor = AutoImageProcessor.from_pretrained("hustvl/yolos-base", torch_dtype=inference_dtype) |
|
model = AutoModelForObjectDetection.from_pretrained("hustvl/yolos-base", torch_dtype=inference_dtype).to(device) |
|
|
|
if "." in targetObject: |
|
raise ValueError("The targetObject name should not contain '.' for yolos-base model.") |
|
elif model_name == "yolos-tiny": |
|
image_processor = AutoImageProcessor.from_pretrained("hustvl/yolos-tiny", torch_dtype=inference_dtype) |
|
model = AutoModelForObjectDetection.from_pretrained("hustvl/yolos-tiny", torch_dtype=inference_dtype).to(device) |
|
|
|
if "." in targetObject: |
|
raise ValueError("The targetObject name should not contain '.' for yolos-tiny model.") |
|
elif model_name == "grounding-dino-base": |
|
image_processor = AutoProcessor.from_pretrained("IDEA-Research/grounding-dino-base", torch_dtype=inference_dtype) |
|
model = AutoModelForZeroShotObjectDetection.from_pretrained("IDEA-Research/grounding-dino-base",torch_dtype=inference_dtype).to(device) |
|
|
|
if "." not in targetObject: |
|
raise ValueError("The targetObject name should contain '.' for grounding-dino-base model.") |
|
elif model_name == "grounding-dino-tiny": |
|
image_processor = AutoProcessor.from_pretrained("IDEA-Research/grounding-dino-tiny", torch_dtype=inference_dtype) |
|
model = AutoModelForZeroShotObjectDetection.from_pretrained("IDEA-Research/grounding-dino-tiny", torch_dtype=inference_dtype).to(device) |
|
|
|
if "." not in targetObject: |
|
raise ValueError("The targetObject name should contain '.' for grounding-dino-tiny model.") |
|
else: |
|
raise NotImplementedError |
|
|
|
model.requires_grad_(False) |
|
model.eval() |
|
|
|
def loss_fn(im_pix_un): |
|
images = ((im_pix_un / 2) + 0.5).clamp(0.0, 1.0) |
|
|
|
|
|
height = 512 |
|
width = 512 * images.shape[3] // images.shape[2] |
|
images = torchvision.transforms.Resize((height, width), antialias=False)(images) |
|
images = images.permute(0, 2, 3, 1) |
|
|
|
image_mean = torch.tensor([0.485, 0.456, 0.406]).to(device) |
|
image_std = torch.tensor([0.229, 0.224, 0.225]).to(device) |
|
|
|
images = (images - image_mean) / image_std |
|
normalized_image = images.permute(0,3,1,2) |
|
|
|
|
|
if model_name == "yolos-base" or model_name == "yolos-tiny": |
|
outputs = model(pixel_values=normalized_image) |
|
else: |
|
inputs = image_processor(text=targetObject, return_tensors="pt").to(device) |
|
outputs = model(pixel_values=normalized_image, input_ids=inputs.input_ids) |
|
|
|
|
|
target_sizes = torch.tensor([normalized_image[0].shape[1:]]*normalized_image.shape[0]).to(device) |
|
|
|
|
|
if model_name == "yolos-base" or model_name == "yolos-tiny": |
|
results = image_processor.post_process_object_detection(outputs, threshold=0.2, target_sizes=target_sizes) |
|
else: |
|
results = image_processor.post_process_grounded_object_detection( |
|
outputs, |
|
inputs.input_ids, |
|
box_threshold=0.4, |
|
text_threshold=0.3, |
|
target_sizes=target_sizes |
|
) |
|
|
|
sum_avg_scores = 0 |
|
for i, result in enumerate(results): |
|
if model_name == "yolos-base" or model_name == "yolos-tiny": |
|
id = model.config.label2id[targetObject] |
|
|
|
index = torch.where(result["labels"] == id) |
|
if len(index[0]) == 0: |
|
sum_avg_scores = torch.sum(outputs.logits - outputs.logits) |
|
continue |
|
scores = result["scores"][index] |
|
else: |
|
if result["scores"].shape[0] == 0: |
|
sum_avg_scores = torch.sum(outputs.last_hidden_state - outputs.last_hidden_state) |
|
continue |
|
scores = result["scores"] |
|
sum_avg_scores = sum_avg_scores + (torch.sum(scores) / scores.shape[0]) |
|
|
|
loss = sum_avg_scores / len(results) |
|
reward = 1 - loss |
|
|
|
return loss, reward |
|
return loss_fn |
|
|
|
def compression_loss_fn(inference_dtype=None, device=None, target=None, grad_scale=0, model_path=None): |
|
''' |
|
Args: |
|
inference_dtype: torch.dtype, the data type of the model. |
|
device: torch.device, the device to run the model. |
|
model_path: str, the path of the compression model. |
|
|
|
Returns: |
|
loss_fn: function, the loss function of the compression reward function. |
|
''' |
|
scorer = JpegCompressionScorer(dtype=inference_dtype, model_path=model_path).to(device, dtype=inference_dtype) |
|
scorer.requires_grad_(False) |
|
scorer.eval() |
|
def loss_fn(im_pix_un): |
|
im_pix = ((im_pix_un + 1) / 2).clamp(0, 1) |
|
rewards = scorer(im_pix) |
|
|
|
if target is None: |
|
loss = rewards |
|
else: |
|
loss = abs(rewards - target) |
|
return loss.mean() * grad_scale, rewards.mean() |
|
|
|
return loss_fn |
|
|
|
def actpred_loss_fn(inference_dtype=None, device=None, num_frames = 14, target_size=224): |
|
scorer = ActPredScorer(device=device, num_frames = num_frames, dtype=inference_dtype) |
|
scorer.requires_grad_(False) |
|
|
|
def preprocess_img(img): |
|
img = ((img/2) + 0.5).clamp(0,1) |
|
img = torchvision.transforms.Resize((target_size, target_size), antialias = True)(img) |
|
img = torchvision.transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])(img) |
|
return img |
|
def loss_fn(vid, target_action_label): |
|
vid = torch.cat([preprocess_img(img).unsqueeze(0) for img in vid])[None] |
|
return scorer.get_loss_and_score(vid, target_action_label) |
|
|
|
return loss_fn |
|
|
|
|
|
def should_sample(global_step, validation_steps, is_sample_preview): |
|
return (global_step % validation_steps == 0 or global_step ==1) \ |
|
and is_sample_preview |
|
|
|
|
|
def run_training(args, peft_model, **kwargs): |
|
|
|
accelerator = Accelerator( |
|
gradient_accumulation_steps=args.gradient_accumulation_steps, |
|
mixed_precision=args.mixed_precision, |
|
project_dir=args.project_dir |
|
) |
|
output_dir = args.project_dir |
|
|
|
|
|
create_logging(logging, logger, accelerator) |
|
|
|
|
|
|
|
if args.inference_only: |
|
peft_model = accelerator.prepare(peft_model) |
|
|
|
assert (args.height % 16 == 0) and (args.width % 16 == 0), "Error: image size [h,w] should be multiples of 16!" |
|
|
|
h, w = args.height // 8, args.width // 8 |
|
if isinstance(peft_model, torch.nn.parallel.DistributedDataParallel): |
|
frames = peft_model.module.temporal_length if args.frames < 0 else args.frames |
|
channels = peft_model.module.channels |
|
else: |
|
frames = peft_model.temporal_length if args.frames < 0 else args.frames |
|
channels = peft_model.channels |
|
|
|
|
|
logger.info("***** Running inference *****") |
|
|
|
first_epoch = 0 |
|
global_step = 0 |
|
|
|
|
|
|
|
with torch.no_grad(): |
|
|
|
|
|
random.seed(args.seed) |
|
torch.manual_seed(args.seed) |
|
|
|
prompts_all = [args.prompt_str] |
|
val_prompt = list(prompts_all) |
|
|
|
assert len(val_prompt) == 1, "Error: only one prompt is allowed for inference in gradio!" |
|
|
|
|
|
results=dict(filenames=[],dir_name=[], prompt=[]) |
|
|
|
|
|
batch_size = len(val_prompt) |
|
noise_shape = [batch_size, channels, frames, h, w] |
|
|
|
fps = torch.tensor([args.fps]*batch_size).to(accelerator.device).long() |
|
|
|
prompts = val_prompt |
|
if isinstance(prompts, str): |
|
prompts = [prompts] |
|
|
|
|
|
with accelerator.autocast(): |
|
if isinstance(peft_model, torch.nn.parallel.DistributedDataParallel): |
|
text_emb = peft_model.module.get_learned_conditioning(prompts).to(accelerator.device) |
|
else: |
|
text_emb = peft_model.get_learned_conditioning(prompts).to(accelerator.device) |
|
|
|
if args.mode == 'base': |
|
cond = {"c_crossattn": [text_emb], "fps": fps} |
|
else: |
|
raise NotImplementedError |
|
|
|
|
|
|
|
if isinstance(peft_model, torch.nn.parallel.DistributedDataParallel): |
|
batch_samples = batch_ddim_sampling(peft_model.module, cond, noise_shape, args.n_samples, \ |
|
args.ddim_steps, args.ddim_eta, args.unconditional_guidance_scale, None, decode_frame=args.decode_frame, **kwargs) |
|
else: |
|
batch_samples = batch_ddim_sampling(peft_model, cond, noise_shape, args.n_samples, \ |
|
args.ddim_steps, args.ddim_eta, args.unconditional_guidance_scale, None, decode_frame=args.decode_frame, **kwargs) |
|
|
|
|
|
dir_name = os.path.join(output_dir, "samples") |
|
|
|
|
|
|
|
filenames = [f"temporal"] |
|
|
|
os.makedirs(dir_name, exist_ok=True) |
|
|
|
save_videos(batch_samples, dir_name, filenames, fps=args.savefps) |
|
|
|
results["filenames"].extend(filenames) |
|
results["dir_name"].extend([dir_name]*len(filenames)) |
|
results["prompt"].extend(prompts) |
|
results=[ results ] |
|
|
|
|
|
|
|
results_gathered=gather_object(results) |
|
|
|
if accelerator.is_main_process: |
|
filenames = [] |
|
dir_name = [] |
|
prompts = [] |
|
for i in range(len(results_gathered)): |
|
filenames.extend(results_gathered[i]["filenames"]) |
|
dir_name.extend(results_gathered[i]["dir_name"]) |
|
prompts.extend(results_gathered[i]["prompt"]) |
|
|
|
logger.info("Validation sample saved!") |
|
|
|
|
|
|
|
|
|
|
|
|
|
video_path = os.path.join(dir_name[0], filenames[0]+".mp4") |
|
|
|
|
|
|
|
|
|
del batch_samples |
|
torch.cuda.empty_cache() |
|
gc.collect() |
|
|
|
return video_path |
|
|
|
|
|
|
|
|
|
|
|
def setup_model(lora_ckpt_path="huggingface-pickscore", lora_rank=16): |
|
parser = get_parser() |
|
args = parser.parse_args() |
|
|
|
|
|
|
|
ckpt_dir = args.ckpt_path.split('/') |
|
ckpt_dir = '/'.join(ckpt_dir[:-1]) |
|
snapshot_download(repo_id='VideoCrafter/VideoCrafter2', local_dir=ckpt_dir) |
|
|
|
|
|
config = OmegaConf.load(args.config) |
|
model_config = config.pop("model", OmegaConf.create()) |
|
model = instantiate_from_config(model_config) |
|
|
|
assert os.path.exists(args.ckpt_path), f"Error: checkpoint [{args.ckpt_path}] Not Found!" |
|
model = load_model_checkpoint(model, args.ckpt_path) |
|
|
|
|
|
if args.mixed_precision != 'no': |
|
model.first_stage_model = model.first_stage_model.half() |
|
model.cond_stage_model = model.cond_stage_model.half() |
|
|
|
|
|
config = peft.LoraConfig( |
|
r=lora_rank, |
|
target_modules=["to_k", "to_v", "to_q"], |
|
lora_dropout=0.01, |
|
) |
|
|
|
peft_model = peft.get_peft_model(model, config) |
|
|
|
peft_model.print_trainable_parameters() |
|
|
|
|
|
if lora_ckpt_path != "Base Model": |
|
if lora_ckpt_path == "huggingface-hps-aesthetic": |
|
snapshot_download(repo_id='zheyangqin/VADER', local_dir ='VADER-VideoCrafter/checkpoints/pretrained_lora') |
|
lora_ckpt_path = 'VADER-VideoCrafter/checkpoints/pretrained_lora/vader_videocrafter_hps_aesthetic.pt' |
|
elif lora_ckpt_path == "huggingface-pickscore": |
|
snapshot_download(repo_id='zheyangqin/VADER', local_dir ='VADER-VideoCrafter/checkpoints/pretrained_lora') |
|
lora_ckpt_path = 'VADER-VideoCrafter/checkpoints/pretrained_lora/vader_videocrafter_pickscore.pt' |
|
elif lora_ckpt_path == "peft_model_532": |
|
lora_ckpt_path = 'VADER-VideoCrafter/checkpoints/pretrained_lora/peft_model_532.pt' |
|
elif lora_ckpt_path == "peft_model_548": |
|
lora_ckpt_path = 'VADER-VideoCrafter/checkpoints/pretrained_lora/peft_model_548.pt' |
|
elif lora_ckpt_path == "peft_model_536": |
|
lora_ckpt_path = 'VADER-VideoCrafter/checkpoints/pretrained_lora/peft_model_536.pt' |
|
elif lora_ckpt_path == "peft_model_400": |
|
lora_ckpt_path = 'VADER-VideoCrafter/checkpoints/pretrained_lora/peft_model_400.pt' |
|
|
|
peft.set_peft_model_state_dict(peft_model, torch.load(lora_ckpt_path)) |
|
|
|
print("Model setup complete!") |
|
return peft_model |
|
|
|
|
|
def main_fn(prompt, seed=200, height=320, width=512, unconditional_guidance_scale=12, ddim_steps=25, ddim_eta=1.0, |
|
frames=24, savefps=10, model=None): |
|
|
|
parser = get_parser() |
|
args = parser.parse_args() |
|
|
|
|
|
|
|
|
|
args.prompt_str = prompt |
|
args.seed = seed |
|
args.height = height |
|
args.width = width |
|
args.unconditional_guidance_scale = unconditional_guidance_scale |
|
args.ddim_steps = ddim_steps |
|
args.ddim_eta = ddim_eta |
|
args.frames = frames |
|
args.savefps = savefps |
|
|
|
seed_everything(args.seed) |
|
|
|
video_path = run_training(args, model) |
|
|
|
return video_path |
|
|
|
|