Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2023 HuggingFace Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import gc | |
| import unittest | |
| import numpy as np | |
| import torch | |
| from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer | |
| from diffusers import PriorTransformer, UnCLIPPipeline, UnCLIPScheduler, UNet2DConditionModel, UNet2DModel | |
| from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel | |
| from diffusers.utils import load_numpy, nightly, slow, torch_device | |
| from diffusers.utils.testing_utils import require_torch_gpu, skip_mps | |
| from ...pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS | |
| from ...test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference | |
| class UnCLIPPipelineFastTests(PipelineTesterMixin, unittest.TestCase): | |
| pipeline_class = UnCLIPPipeline | |
| params = TEXT_TO_IMAGE_PARAMS - { | |
| "negative_prompt", | |
| "height", | |
| "width", | |
| "negative_prompt_embeds", | |
| "guidance_scale", | |
| "prompt_embeds", | |
| "cross_attention_kwargs", | |
| } | |
| batch_params = TEXT_TO_IMAGE_BATCH_PARAMS | |
| required_optional_params = [ | |
| "generator", | |
| "return_dict", | |
| "prior_num_inference_steps", | |
| "decoder_num_inference_steps", | |
| "super_res_num_inference_steps", | |
| ] | |
| test_xformers_attention = False | |
| def text_embedder_hidden_size(self): | |
| return 32 | |
| def time_input_dim(self): | |
| return 32 | |
| def block_out_channels_0(self): | |
| return self.time_input_dim | |
| def time_embed_dim(self): | |
| return self.time_input_dim * 4 | |
| def cross_attention_dim(self): | |
| return 100 | |
| def dummy_tokenizer(self): | |
| tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
| return tokenizer | |
| def dummy_text_encoder(self): | |
| torch.manual_seed(0) | |
| config = CLIPTextConfig( | |
| bos_token_id=0, | |
| eos_token_id=2, | |
| hidden_size=self.text_embedder_hidden_size, | |
| projection_dim=self.text_embedder_hidden_size, | |
| intermediate_size=37, | |
| layer_norm_eps=1e-05, | |
| num_attention_heads=4, | |
| num_hidden_layers=5, | |
| pad_token_id=1, | |
| vocab_size=1000, | |
| ) | |
| return CLIPTextModelWithProjection(config) | |
| def dummy_prior(self): | |
| torch.manual_seed(0) | |
| model_kwargs = { | |
| "num_attention_heads": 2, | |
| "attention_head_dim": 12, | |
| "embedding_dim": self.text_embedder_hidden_size, | |
| "num_layers": 1, | |
| } | |
| model = PriorTransformer(**model_kwargs) | |
| return model | |
| def dummy_text_proj(self): | |
| torch.manual_seed(0) | |
| model_kwargs = { | |
| "clip_embeddings_dim": self.text_embedder_hidden_size, | |
| "time_embed_dim": self.time_embed_dim, | |
| "cross_attention_dim": self.cross_attention_dim, | |
| } | |
| model = UnCLIPTextProjModel(**model_kwargs) | |
| return model | |
| def dummy_decoder(self): | |
| torch.manual_seed(0) | |
| model_kwargs = { | |
| "sample_size": 32, | |
| # RGB in channels | |
| "in_channels": 3, | |
| # Out channels is double in channels because predicts mean and variance | |
| "out_channels": 6, | |
| "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), | |
| "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), | |
| "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", | |
| "block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2), | |
| "layers_per_block": 1, | |
| "cross_attention_dim": self.cross_attention_dim, | |
| "attention_head_dim": 4, | |
| "resnet_time_scale_shift": "scale_shift", | |
| "class_embed_type": "identity", | |
| } | |
| model = UNet2DConditionModel(**model_kwargs) | |
| return model | |
| def dummy_super_res_kwargs(self): | |
| return { | |
| "sample_size": 64, | |
| "layers_per_block": 1, | |
| "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), | |
| "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), | |
| "block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2), | |
| "in_channels": 6, | |
| "out_channels": 3, | |
| } | |
| def dummy_super_res_first(self): | |
| torch.manual_seed(0) | |
| model = UNet2DModel(**self.dummy_super_res_kwargs) | |
| return model | |
| def dummy_super_res_last(self): | |
| # seeded differently to get different unet than `self.dummy_super_res_first` | |
| torch.manual_seed(1) | |
| model = UNet2DModel(**self.dummy_super_res_kwargs) | |
| return model | |
| def get_dummy_components(self): | |
| prior = self.dummy_prior | |
| decoder = self.dummy_decoder | |
| text_proj = self.dummy_text_proj | |
| text_encoder = self.dummy_text_encoder | |
| tokenizer = self.dummy_tokenizer | |
| super_res_first = self.dummy_super_res_first | |
| super_res_last = self.dummy_super_res_last | |
| prior_scheduler = UnCLIPScheduler( | |
| variance_type="fixed_small_log", | |
| prediction_type="sample", | |
| num_train_timesteps=1000, | |
| clip_sample_range=5.0, | |
| ) | |
| decoder_scheduler = UnCLIPScheduler( | |
| variance_type="learned_range", | |
| prediction_type="epsilon", | |
| num_train_timesteps=1000, | |
| ) | |
| super_res_scheduler = UnCLIPScheduler( | |
| variance_type="fixed_small_log", | |
| prediction_type="epsilon", | |
| num_train_timesteps=1000, | |
| ) | |
| components = { | |
| "prior": prior, | |
| "decoder": decoder, | |
| "text_proj": text_proj, | |
| "text_encoder": text_encoder, | |
| "tokenizer": tokenizer, | |
| "super_res_first": super_res_first, | |
| "super_res_last": super_res_last, | |
| "prior_scheduler": prior_scheduler, | |
| "decoder_scheduler": decoder_scheduler, | |
| "super_res_scheduler": super_res_scheduler, | |
| } | |
| return components | |
| def get_dummy_inputs(self, device, seed=0): | |
| if str(device).startswith("mps"): | |
| generator = torch.manual_seed(seed) | |
| else: | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| inputs = { | |
| "prompt": "horse", | |
| "generator": generator, | |
| "prior_num_inference_steps": 2, | |
| "decoder_num_inference_steps": 2, | |
| "super_res_num_inference_steps": 2, | |
| "output_type": "numpy", | |
| } | |
| return inputs | |
| def test_unclip(self): | |
| device = "cpu" | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe = pipe.to(device) | |
| pipe.set_progress_bar_config(disable=None) | |
| output = pipe(**self.get_dummy_inputs(device)) | |
| image = output.images | |
| image_from_tuple = pipe( | |
| **self.get_dummy_inputs(device), | |
| return_dict=False, | |
| )[0] | |
| image_slice = image[0, -3:, -3:, -1] | |
| image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] | |
| assert image.shape == (1, 64, 64, 3) | |
| expected_slice = np.array( | |
| [ | |
| 0.9997, | |
| 0.9988, | |
| 0.0028, | |
| 0.9997, | |
| 0.9984, | |
| 0.9965, | |
| 0.0029, | |
| 0.9986, | |
| 0.0025, | |
| ] | |
| ) | |
| assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
| assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 | |
| def test_unclip_passed_text_embed(self): | |
| device = torch.device("cpu") | |
| class DummyScheduler: | |
| init_noise_sigma = 1 | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe = pipe.to(device) | |
| prior = components["prior"] | |
| decoder = components["decoder"] | |
| super_res_first = components["super_res_first"] | |
| tokenizer = components["tokenizer"] | |
| text_encoder = components["text_encoder"] | |
| generator = torch.Generator(device=device).manual_seed(0) | |
| dtype = prior.dtype | |
| batch_size = 1 | |
| shape = (batch_size, prior.config.embedding_dim) | |
| prior_latents = pipe.prepare_latents( | |
| shape, dtype=dtype, device=device, generator=generator, latents=None, scheduler=DummyScheduler() | |
| ) | |
| shape = (batch_size, decoder.in_channels, decoder.sample_size, decoder.sample_size) | |
| decoder_latents = pipe.prepare_latents( | |
| shape, dtype=dtype, device=device, generator=generator, latents=None, scheduler=DummyScheduler() | |
| ) | |
| shape = ( | |
| batch_size, | |
| super_res_first.in_channels // 2, | |
| super_res_first.sample_size, | |
| super_res_first.sample_size, | |
| ) | |
| super_res_latents = pipe.prepare_latents( | |
| shape, dtype=dtype, device=device, generator=generator, latents=None, scheduler=DummyScheduler() | |
| ) | |
| pipe.set_progress_bar_config(disable=None) | |
| prompt = "this is a prompt example" | |
| generator = torch.Generator(device=device).manual_seed(0) | |
| output = pipe( | |
| [prompt], | |
| generator=generator, | |
| prior_num_inference_steps=2, | |
| decoder_num_inference_steps=2, | |
| super_res_num_inference_steps=2, | |
| prior_latents=prior_latents, | |
| decoder_latents=decoder_latents, | |
| super_res_latents=super_res_latents, | |
| output_type="np", | |
| ) | |
| image = output.images | |
| text_inputs = tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=tokenizer.model_max_length, | |
| return_tensors="pt", | |
| ) | |
| text_model_output = text_encoder(text_inputs.input_ids) | |
| text_attention_mask = text_inputs.attention_mask | |
| generator = torch.Generator(device=device).manual_seed(0) | |
| image_from_text = pipe( | |
| generator=generator, | |
| prior_num_inference_steps=2, | |
| decoder_num_inference_steps=2, | |
| super_res_num_inference_steps=2, | |
| prior_latents=prior_latents, | |
| decoder_latents=decoder_latents, | |
| super_res_latents=super_res_latents, | |
| text_model_output=text_model_output, | |
| text_attention_mask=text_attention_mask, | |
| output_type="np", | |
| )[0] | |
| # make sure passing text embeddings manually is identical | |
| assert np.abs(image - image_from_text).max() < 1e-4 | |
| # Overriding PipelineTesterMixin::test_attention_slicing_forward_pass | |
| # because UnCLIP GPU undeterminism requires a looser check. | |
| def test_attention_slicing_forward_pass(self): | |
| test_max_difference = torch_device == "cpu" | |
| self._test_attention_slicing_forward_pass(test_max_difference=test_max_difference) | |
| # Overriding PipelineTesterMixin::test_inference_batch_single_identical | |
| # because UnCLIP undeterminism requires a looser check. | |
| def test_inference_batch_single_identical(self): | |
| test_max_difference = torch_device == "cpu" | |
| relax_max_difference = True | |
| additional_params_copy_to_batched_inputs = [ | |
| "prior_num_inference_steps", | |
| "decoder_num_inference_steps", | |
| "super_res_num_inference_steps", | |
| ] | |
| self._test_inference_batch_single_identical( | |
| test_max_difference=test_max_difference, | |
| relax_max_difference=relax_max_difference, | |
| additional_params_copy_to_batched_inputs=additional_params_copy_to_batched_inputs, | |
| ) | |
| def test_inference_batch_consistent(self): | |
| additional_params_copy_to_batched_inputs = [ | |
| "prior_num_inference_steps", | |
| "decoder_num_inference_steps", | |
| "super_res_num_inference_steps", | |
| ] | |
| if torch_device == "mps": | |
| # TODO: MPS errors with larger batch sizes | |
| batch_sizes = [2, 3] | |
| self._test_inference_batch_consistent( | |
| batch_sizes=batch_sizes, | |
| additional_params_copy_to_batched_inputs=additional_params_copy_to_batched_inputs, | |
| ) | |
| else: | |
| self._test_inference_batch_consistent( | |
| additional_params_copy_to_batched_inputs=additional_params_copy_to_batched_inputs | |
| ) | |
| def test_dict_tuple_outputs_equivalent(self): | |
| return super().test_dict_tuple_outputs_equivalent() | |
| def test_save_load_local(self): | |
| return super().test_save_load_local() | |
| def test_save_load_optional_components(self): | |
| return super().test_save_load_optional_components() | |
| class UnCLIPPipelineCPUIntegrationTests(unittest.TestCase): | |
| def tearDown(self): | |
| # clean up the VRAM after each test | |
| super().tearDown() | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def test_unclip_karlo_cpu_fp32(self): | |
| expected_image = load_numpy( | |
| "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" | |
| "/unclip/karlo_v1_alpha_horse_cpu.npy" | |
| ) | |
| pipeline = UnCLIPPipeline.from_pretrained("kakaobrain/karlo-v1-alpha") | |
| pipeline.set_progress_bar_config(disable=None) | |
| generator = torch.manual_seed(0) | |
| output = pipeline( | |
| "horse", | |
| num_images_per_prompt=1, | |
| generator=generator, | |
| output_type="np", | |
| ) | |
| image = output.images[0] | |
| assert image.shape == (256, 256, 3) | |
| assert np.abs(expected_image - image).max() < 1e-1 | |
| class UnCLIPPipelineIntegrationTests(unittest.TestCase): | |
| def tearDown(self): | |
| # clean up the VRAM after each test | |
| super().tearDown() | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def test_unclip_karlo(self): | |
| expected_image = load_numpy( | |
| "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" | |
| "/unclip/karlo_v1_alpha_horse_fp16.npy" | |
| ) | |
| pipeline = UnCLIPPipeline.from_pretrained("kakaobrain/karlo-v1-alpha", torch_dtype=torch.float16) | |
| pipeline = pipeline.to(torch_device) | |
| pipeline.set_progress_bar_config(disable=None) | |
| generator = torch.Generator(device="cpu").manual_seed(0) | |
| output = pipeline( | |
| "horse", | |
| generator=generator, | |
| output_type="np", | |
| ) | |
| image = output.images[0] | |
| assert image.shape == (256, 256, 3) | |
| assert_mean_pixel_difference(image, expected_image) | |
| def test_unclip_pipeline_with_sequential_cpu_offloading(self): | |
| torch.cuda.empty_cache() | |
| torch.cuda.reset_max_memory_allocated() | |
| torch.cuda.reset_peak_memory_stats() | |
| pipe = UnCLIPPipeline.from_pretrained("kakaobrain/karlo-v1-alpha", torch_dtype=torch.float16) | |
| pipe = pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| pipe.enable_attention_slicing() | |
| pipe.enable_sequential_cpu_offload() | |
| _ = pipe( | |
| "horse", | |
| num_images_per_prompt=1, | |
| prior_num_inference_steps=2, | |
| decoder_num_inference_steps=2, | |
| super_res_num_inference_steps=2, | |
| output_type="np", | |
| ) | |
| mem_bytes = torch.cuda.max_memory_allocated() | |
| # make sure that less than 7 GB is allocated | |
| assert mem_bytes < 7 * 10**9 | |