Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2023 HuggingFace Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import gc | |
| import unittest | |
| import numpy as np | |
| import torch | |
| from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, Transformer2DModel | |
| from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device | |
| from diffusers.utils.testing_utils import require_torch_gpu | |
| from ...pipeline_params import ( | |
| CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, | |
| CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, | |
| ) | |
| from ...test_pipelines_common import PipelineTesterMixin | |
| torch.backends.cuda.matmul.allow_tf32 = False | |
| class DiTPipelineFastTests(PipelineTesterMixin, unittest.TestCase): | |
| pipeline_class = DiTPipeline | |
| params = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS | |
| required_optional_params = PipelineTesterMixin.required_optional_params - { | |
| "latents", | |
| "num_images_per_prompt", | |
| "callback", | |
| "callback_steps", | |
| } | |
| batch_params = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS | |
| test_cpu_offload = False | |
| def get_dummy_components(self): | |
| torch.manual_seed(0) | |
| transformer = Transformer2DModel( | |
| sample_size=16, | |
| num_layers=2, | |
| patch_size=4, | |
| attention_head_dim=8, | |
| num_attention_heads=2, | |
| in_channels=4, | |
| out_channels=8, | |
| attention_bias=True, | |
| activation_fn="gelu-approximate", | |
| num_embeds_ada_norm=1000, | |
| norm_type="ada_norm_zero", | |
| norm_elementwise_affine=False, | |
| ) | |
| vae = AutoencoderKL() | |
| scheduler = DDIMScheduler() | |
| components = {"transformer": transformer.eval(), "vae": vae.eval(), "scheduler": scheduler} | |
| return components | |
| def get_dummy_inputs(self, device, seed=0): | |
| if str(device).startswith("mps"): | |
| generator = torch.manual_seed(seed) | |
| else: | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| inputs = { | |
| "class_labels": [1], | |
| "generator": generator, | |
| "num_inference_steps": 2, | |
| "output_type": "numpy", | |
| } | |
| return inputs | |
| def test_inference(self): | |
| device = "cpu" | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe.to(device) | |
| pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(device) | |
| image = pipe(**inputs).images | |
| image_slice = image[0, -3:, -3:, -1] | |
| self.assertEqual(image.shape, (1, 16, 16, 3)) | |
| expected_slice = np.array([0.4380, 0.4141, 0.5159, 0.0000, 0.4282, 0.6680, 0.5485, 0.2545, 0.6719]) | |
| max_diff = np.abs(image_slice.flatten() - expected_slice).max() | |
| self.assertLessEqual(max_diff, 1e-3) | |
| def test_inference_batch_single_identical(self): | |
| self._test_inference_batch_single_identical(relax_max_difference=True, expected_max_diff=1e-3) | |
| def test_xformers_attention_forwardGenerator_pass(self): | |
| self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3) | |
| class DiTPipelineIntegrationTests(unittest.TestCase): | |
| def tearDown(self): | |
| super().tearDown() | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def test_dit_256(self): | |
| generator = torch.manual_seed(0) | |
| pipe = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256") | |
| pipe.to("cuda") | |
| words = ["vase", "umbrella", "white shark", "white wolf"] | |
| ids = pipe.get_label_ids(words) | |
| images = pipe(ids, generator=generator, num_inference_steps=40, output_type="np").images | |
| for word, image in zip(words, images): | |
| expected_image = load_numpy( | |
| f"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy" | |
| ) | |
| assert np.abs((expected_image - image).max()) < 1e-2 | |
| def test_dit_512(self): | |
| pipe = DiTPipeline.from_pretrained("facebook/DiT-XL-2-512") | |
| pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) | |
| pipe.to("cuda") | |
| words = ["vase", "umbrella"] | |
| ids = pipe.get_label_ids(words) | |
| generator = torch.manual_seed(0) | |
| images = pipe(ids, generator=generator, num_inference_steps=25, output_type="np").images | |
| for word, image in zip(words, images): | |
| expected_image = load_numpy( | |
| "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" | |
| f"/dit/{word}_512.npy" | |
| ) | |
| assert np.abs((expected_image - image).max()) < 1e-1 | |