Spaces:
Running
on
Zero
Running
on
Zero
| <!--Copyright 2023 The HuggingFace Team. All rights reserved. | |
| Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with | |
| the License. You may obtain a copy of the License at | |
| http://www.apache.org/licenses/LICENSE-2.0 | |
| Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on | |
| an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the | |
| specific language governing permissions and limitations under the License. | |
| --> | |
| # Audio Diffusion | |
| ## Overview | |
| [Audio Diffusion](https://github.com/teticio/audio-diffusion) by Robert Dargavel Smith. | |
| Audio Diffusion leverages the recent advances in image generation using diffusion models by converting audio samples to | |
| and from mel spectrogram images. | |
| The original codebase of this implementation can be found [here](https://github.com/teticio/audio-diffusion), including | |
| training scripts and example notebooks. | |
| ## Available Pipelines: | |
| | Pipeline | Tasks | Colab | |
| |---|---|:---:| | |
| | [pipeline_audio_diffusion.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/audio_diffusion/pipeline_audio_diffusion.py) | *Unconditional Audio Generation* | [](https://colab.research.google.com/github/teticio/audio-diffusion/blob/master/notebooks/audio_diffusion_pipeline.ipynb) | | |
| ## Examples: | |
| ### Audio Diffusion | |
| ```python | |
| import torch | |
| from IPython.display import Audio | |
| from diffusers import DiffusionPipeline | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| pipe = DiffusionPipeline.from_pretrained("teticio/audio-diffusion-256").to(device) | |
| output = pipe() | |
| display(output.images[0]) | |
| display(Audio(output.audios[0], rate=mel.get_sample_rate())) | |
| ``` | |
| ### Latent Audio Diffusion | |
| ```python | |
| import torch | |
| from IPython.display import Audio | |
| from diffusers import DiffusionPipeline | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| pipe = DiffusionPipeline.from_pretrained("teticio/latent-audio-diffusion-256").to(device) | |
| output = pipe() | |
| display(output.images[0]) | |
| display(Audio(output.audios[0], rate=pipe.mel.get_sample_rate())) | |
| ``` | |
| ### Audio Diffusion with DDIM (faster) | |
| ```python | |
| import torch | |
| from IPython.display import Audio | |
| from diffusers import DiffusionPipeline | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| pipe = DiffusionPipeline.from_pretrained("teticio/audio-diffusion-ddim-256").to(device) | |
| output = pipe() | |
| display(output.images[0]) | |
| display(Audio(output.audios[0], rate=pipe.mel.get_sample_rate())) | |
| ``` | |
| ### Variations, in-painting, out-painting etc. | |
| ```python | |
| output = pipe( | |
| raw_audio=output.audios[0, 0], | |
| start_step=int(pipe.get_default_steps() / 2), | |
| mask_start_secs=1, | |
| mask_end_secs=1, | |
| ) | |
| display(output.images[0]) | |
| display(Audio(output.audios[0], rate=pipe.mel.get_sample_rate())) | |
| ``` | |
| ## AudioDiffusionPipeline | |
| [[autodoc]] AudioDiffusionPipeline | |
| - all | |
| - __call__ | |
| ## Mel | |
| [[autodoc]] Mel | |