Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2023 HuggingFace Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import gc | |
| import unittest | |
| import numpy as np | |
| import torch | |
| from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer | |
| from diffusers import Transformer2DModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel | |
| from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings | |
| from diffusers.utils import load_numpy, slow, torch_device | |
| from diffusers.utils.testing_utils import require_torch_gpu | |
| torch.backends.cuda.matmul.allow_tf32 = False | |
| class VQDiffusionPipelineFastTests(unittest.TestCase): | |
| def tearDown(self): | |
| # clean up the VRAM after each test | |
| super().tearDown() | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def num_embed(self): | |
| return 12 | |
| def num_embeds_ada_norm(self): | |
| return 12 | |
| def text_embedder_hidden_size(self): | |
| return 32 | |
| def dummy_vqvae(self): | |
| torch.manual_seed(0) | |
| model = VQModel( | |
| block_out_channels=[32, 64], | |
| in_channels=3, | |
| out_channels=3, | |
| down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | |
| up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], | |
| latent_channels=3, | |
| num_vq_embeddings=self.num_embed, | |
| vq_embed_dim=3, | |
| ) | |
| return model | |
| def dummy_tokenizer(self): | |
| tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
| return tokenizer | |
| def dummy_text_encoder(self): | |
| torch.manual_seed(0) | |
| config = CLIPTextConfig( | |
| bos_token_id=0, | |
| eos_token_id=2, | |
| hidden_size=self.text_embedder_hidden_size, | |
| intermediate_size=37, | |
| layer_norm_eps=1e-05, | |
| num_attention_heads=4, | |
| num_hidden_layers=5, | |
| pad_token_id=1, | |
| vocab_size=1000, | |
| ) | |
| return CLIPTextModel(config) | |
| def dummy_transformer(self): | |
| torch.manual_seed(0) | |
| height = 12 | |
| width = 12 | |
| model_kwargs = { | |
| "attention_bias": True, | |
| "cross_attention_dim": 32, | |
| "attention_head_dim": height * width, | |
| "num_attention_heads": 1, | |
| "num_vector_embeds": self.num_embed, | |
| "num_embeds_ada_norm": self.num_embeds_ada_norm, | |
| "norm_num_groups": 32, | |
| "sample_size": width, | |
| "activation_fn": "geglu-approximate", | |
| } | |
| model = Transformer2DModel(**model_kwargs) | |
| return model | |
| def test_vq_diffusion(self): | |
| device = "cpu" | |
| vqvae = self.dummy_vqvae | |
| text_encoder = self.dummy_text_encoder | |
| tokenizer = self.dummy_tokenizer | |
| transformer = self.dummy_transformer | |
| scheduler = VQDiffusionScheduler(self.num_embed) | |
| learned_classifier_free_sampling_embeddings = LearnedClassifierFreeSamplingEmbeddings(learnable=False) | |
| pipe = VQDiffusionPipeline( | |
| vqvae=vqvae, | |
| text_encoder=text_encoder, | |
| tokenizer=tokenizer, | |
| transformer=transformer, | |
| scheduler=scheduler, | |
| learned_classifier_free_sampling_embeddings=learned_classifier_free_sampling_embeddings, | |
| ) | |
| pipe = pipe.to(device) | |
| pipe.set_progress_bar_config(disable=None) | |
| prompt = "teddy bear playing in the pool" | |
| generator = torch.Generator(device=device).manual_seed(0) | |
| output = pipe([prompt], generator=generator, num_inference_steps=2, output_type="np") | |
| image = output.images | |
| generator = torch.Generator(device=device).manual_seed(0) | |
| image_from_tuple = pipe( | |
| [prompt], generator=generator, output_type="np", return_dict=False, num_inference_steps=2 | |
| )[0] | |
| image_slice = image[0, -3:, -3:, -1] | |
| image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] | |
| assert image.shape == (1, 24, 24, 3) | |
| expected_slice = np.array([0.6583, 0.6410, 0.5325, 0.5635, 0.5563, 0.4234, 0.6008, 0.5491, 0.4880]) | |
| assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
| assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 | |
| def test_vq_diffusion_classifier_free_sampling(self): | |
| device = "cpu" | |
| vqvae = self.dummy_vqvae | |
| text_encoder = self.dummy_text_encoder | |
| tokenizer = self.dummy_tokenizer | |
| transformer = self.dummy_transformer | |
| scheduler = VQDiffusionScheduler(self.num_embed) | |
| learned_classifier_free_sampling_embeddings = LearnedClassifierFreeSamplingEmbeddings( | |
| learnable=True, hidden_size=self.text_embedder_hidden_size, length=tokenizer.model_max_length | |
| ) | |
| pipe = VQDiffusionPipeline( | |
| vqvae=vqvae, | |
| text_encoder=text_encoder, | |
| tokenizer=tokenizer, | |
| transformer=transformer, | |
| scheduler=scheduler, | |
| learned_classifier_free_sampling_embeddings=learned_classifier_free_sampling_embeddings, | |
| ) | |
| pipe = pipe.to(device) | |
| pipe.set_progress_bar_config(disable=None) | |
| prompt = "teddy bear playing in the pool" | |
| generator = torch.Generator(device=device).manual_seed(0) | |
| output = pipe([prompt], generator=generator, num_inference_steps=2, output_type="np") | |
| image = output.images | |
| generator = torch.Generator(device=device).manual_seed(0) | |
| image_from_tuple = pipe( | |
| [prompt], generator=generator, output_type="np", return_dict=False, num_inference_steps=2 | |
| )[0] | |
| image_slice = image[0, -3:, -3:, -1] | |
| image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] | |
| assert image.shape == (1, 24, 24, 3) | |
| expected_slice = np.array([0.6647, 0.6531, 0.5303, 0.5891, 0.5726, 0.4439, 0.6304, 0.5564, 0.4912]) | |
| assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
| assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 | |
| class VQDiffusionPipelineIntegrationTests(unittest.TestCase): | |
| def tearDown(self): | |
| # clean up the VRAM after each test | |
| super().tearDown() | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def test_vq_diffusion_classifier_free_sampling(self): | |
| expected_image = load_numpy( | |
| "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" | |
| "/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy" | |
| ) | |
| pipeline = VQDiffusionPipeline.from_pretrained("microsoft/vq-diffusion-ithq") | |
| pipeline = pipeline.to(torch_device) | |
| pipeline.set_progress_bar_config(disable=None) | |
| # requires GPU generator for gumbel softmax | |
| # don't use GPU generator in tests though | |
| generator = torch.Generator(device=torch_device).manual_seed(0) | |
| output = pipeline( | |
| "teddy bear playing in the pool", | |
| num_images_per_prompt=1, | |
| generator=generator, | |
| output_type="np", | |
| ) | |
| image = output.images[0] | |
| assert image.shape == (256, 256, 3) | |
| assert np.abs(expected_image - image).max() < 1e-2 | |