vinesmsuic
commited on
Commit
·
bb2108c
1
Parent(s):
b15506b
update
Browse files- app.py +5 -4
- black_box_image_edit/__init__.py +1 -0
- black_box_image_edit/cosxl/custom_pipeline.py +977 -0
- black_box_image_edit/cosxl/utils.py +17 -0
- black_box_image_edit/cosxl_edit.py +58 -0
- black_box_image_edit/instantstyle.py +67 -0
- black_box_image_edit/ip_adapter/__init__.py +9 -0
- black_box_image_edit/ip_adapter/attention_processor.py +562 -0
- black_box_image_edit/ip_adapter/ip_adapter.py +460 -0
- black_box_image_edit/ip_adapter/resampler.py +158 -0
- black_box_image_edit/ip_adapter/utils.py +93 -0
- black_box_image_edit/utils.py +173 -0
app.py
CHANGED
@@ -14,7 +14,8 @@ from PIL import Image
|
|
14 |
import torch
|
15 |
import numpy as np
|
16 |
|
17 |
-
from black_box_image_edit.
|
|
|
18 |
from prepare_video import crop_and_resize_video
|
19 |
from edit_image import infer_video
|
20 |
|
@@ -40,7 +41,7 @@ demo_examples = [
|
|
40 |
TEMP_DIR = "_demo_temp"
|
41 |
|
42 |
|
43 |
-
image_edit_model =
|
44 |
|
45 |
@torch.no_grad()
|
46 |
@spaces.GPU(duration=30)
|
@@ -315,7 +316,7 @@ with gr.Blocks() as demo:
|
|
315 |
gr.Markdown("Official 🤗 Gradio demo for [AnyV2V: A Plug-and-Play Framework For Any Video-to-Video Editing Tasks](https://tiger-ai-lab.github.io/AnyV2V/)")
|
316 |
|
317 |
with gr.Tabs():
|
318 |
-
with gr.TabItem('AnyV2V(I2VGenXL) +
|
319 |
gr.Markdown("# Preprocessing Video Stage")
|
320 |
gr.Markdown("In this demo, AnyV2V only support video with 2 seconds duration and 8 fps. If your video is not in this format, we will preprocess it for you. Click on the Preprocess video button!")
|
321 |
with gr.Row():
|
@@ -339,7 +340,7 @@ with gr.Blocks() as demo:
|
|
339 |
pv_longest_to_width = gr.Checkbox(label="Resize Longest Dimension to Width")
|
340 |
|
341 |
gr.Markdown("# Image Editing Stage")
|
342 |
-
gr.Markdown("Edit the first frame of the video to your liking! Click on the Edit the first frame button after inputting the editing instruction prompt. This image editing stage is powered by
|
343 |
with gr.Row():
|
344 |
with gr.Column():
|
345 |
src_first_frame = gr.Image(label="First Frame", type="filepath", interactive=False)
|
|
|
14 |
import torch
|
15 |
import numpy as np
|
16 |
|
17 |
+
from black_box_image_edit.cosxl_edit import CosXLEdit
|
18 |
+
#from black_box_image_edit.instructpix2pix import InstructPix2Pix
|
19 |
from prepare_video import crop_and_resize_video
|
20 |
from edit_image import infer_video
|
21 |
|
|
|
41 |
TEMP_DIR = "_demo_temp"
|
42 |
|
43 |
|
44 |
+
image_edit_model = CosXLEdit()
|
45 |
|
46 |
@torch.no_grad()
|
47 |
@spaces.GPU(duration=30)
|
|
|
316 |
gr.Markdown("Official 🤗 Gradio demo for [AnyV2V: A Plug-and-Play Framework For Any Video-to-Video Editing Tasks](https://tiger-ai-lab.github.io/AnyV2V/)")
|
317 |
|
318 |
with gr.Tabs():
|
319 |
+
with gr.TabItem('AnyV2V(I2VGenXL) + CosXLEdit'):
|
320 |
gr.Markdown("# Preprocessing Video Stage")
|
321 |
gr.Markdown("In this demo, AnyV2V only support video with 2 seconds duration and 8 fps. If your video is not in this format, we will preprocess it for you. Click on the Preprocess video button!")
|
322 |
with gr.Row():
|
|
|
340 |
pv_longest_to_width = gr.Checkbox(label="Resize Longest Dimension to Width")
|
341 |
|
342 |
gr.Markdown("# Image Editing Stage")
|
343 |
+
gr.Markdown("Edit the first frame of the video to your liking! Click on the Edit the first frame button after inputting the editing instruction prompt. This image editing stage is powered by CosXLEdit. You can try edit the image multiple times until you are happy with the result! You can also choose to download the first frame of the video and edit it with other software (e.g. Photoshop, GIMP, etc.) or use other image editing models to obtain the edited frame and upload it directly.")
|
344 |
with gr.Row():
|
345 |
with gr.Column():
|
346 |
src_first_frame = gr.Image(label="First Frame", type="filepath", interactive=False)
|
black_box_image_edit/__init__.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
from .instructpix2pix import InstructPix2Pix, MagicBrush
|
|
|
2 |
|
3 |
from typing import Union, Optional, Tuple
|
4 |
import numpy as np
|
|
|
1 |
from .instructpix2pix import InstructPix2Pix, MagicBrush
|
2 |
+
from .cosxl_edit import CosXLEdit
|
3 |
|
4 |
from typing import Union, Optional, Tuple
|
5 |
import numpy as np
|
black_box_image_edit/cosxl/custom_pipeline.py
ADDED
@@ -0,0 +1,977 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 Harutatsu Akiyama and The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import inspect
|
16 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
17 |
+
|
18 |
+
import PIL.Image
|
19 |
+
import torch
|
20 |
+
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
|
21 |
+
|
22 |
+
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
23 |
+
from diffusers.loaders import FromSingleFileMixin, StableDiffusionXLLoraLoaderMixin, TextualInversionLoaderMixin
|
24 |
+
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
25 |
+
from diffusers.models.attention_processor import (
|
26 |
+
AttnProcessor2_0,
|
27 |
+
FusedAttnProcessor2_0,
|
28 |
+
LoRAAttnProcessor2_0,
|
29 |
+
LoRAXFormersAttnProcessor,
|
30 |
+
XFormersAttnProcessor,
|
31 |
+
)
|
32 |
+
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
33 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
34 |
+
from diffusers.utils import (
|
35 |
+
USE_PEFT_BACKEND,
|
36 |
+
deprecate,
|
37 |
+
is_invisible_watermark_available,
|
38 |
+
is_torch_xla_available,
|
39 |
+
logging,
|
40 |
+
replace_example_docstring,
|
41 |
+
scale_lora_layers,
|
42 |
+
)
|
43 |
+
from diffusers.utils.torch_utils import randn_tensor
|
44 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
45 |
+
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
|
46 |
+
|
47 |
+
|
48 |
+
if is_invisible_watermark_available():
|
49 |
+
from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker
|
50 |
+
|
51 |
+
if is_torch_xla_available():
|
52 |
+
import torch_xla.core.xla_model as xm
|
53 |
+
|
54 |
+
XLA_AVAILABLE = True
|
55 |
+
else:
|
56 |
+
XLA_AVAILABLE = False
|
57 |
+
|
58 |
+
|
59 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
60 |
+
|
61 |
+
EXAMPLE_DOC_STRING = """
|
62 |
+
Examples:
|
63 |
+
```py
|
64 |
+
>>> import torch
|
65 |
+
>>> from diffusers import StableDiffusionXLInstructPix2PixPipeline
|
66 |
+
>>> from diffusers.utils import load_image
|
67 |
+
>>> resolution = 768
|
68 |
+
>>> image = load_image(
|
69 |
+
... "https://hf.co/datasets/diffusers/diffusers-images-docs/resolve/main/mountain.png"
|
70 |
+
... ).resize((resolution, resolution))
|
71 |
+
>>> edit_instruction = "Turn sky into a cloudy one"
|
72 |
+
>>> pipe = StableDiffusionXLInstructPix2PixPipeline.from_pretrained(
|
73 |
+
... "diffusers/sdxl-instructpix2pix-768", torch_dtype=torch.float16
|
74 |
+
... ).to("cuda")
|
75 |
+
>>> edited_image = pipe(
|
76 |
+
... prompt=edit_instruction,
|
77 |
+
... image=image,
|
78 |
+
... height=resolution,
|
79 |
+
... width=resolution,
|
80 |
+
... guidance_scale=3.0,
|
81 |
+
... image_guidance_scale=1.5,
|
82 |
+
... num_inference_steps=30,
|
83 |
+
... ).images[0]
|
84 |
+
>>> edited_image
|
85 |
+
```
|
86 |
+
"""
|
87 |
+
|
88 |
+
|
89 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
90 |
+
def retrieve_latents(
|
91 |
+
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
|
92 |
+
):
|
93 |
+
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
|
94 |
+
return encoder_output.latent_dist.sample(generator)
|
95 |
+
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
|
96 |
+
return encoder_output.latent_dist.mode()
|
97 |
+
elif hasattr(encoder_output, "latents"):
|
98 |
+
return encoder_output.latents
|
99 |
+
else:
|
100 |
+
raise AttributeError("Could not access latents of provided encoder_output")
|
101 |
+
|
102 |
+
|
103 |
+
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
104 |
+
"""
|
105 |
+
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
106 |
+
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
|
107 |
+
"""
|
108 |
+
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
109 |
+
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
110 |
+
# rescale the results from guidance (fixes overexposure)
|
111 |
+
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
112 |
+
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
|
113 |
+
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
|
114 |
+
return noise_cfg
|
115 |
+
|
116 |
+
|
117 |
+
class CosStableDiffusionXLInstructPix2PixPipeline(
|
118 |
+
DiffusionPipeline,
|
119 |
+
StableDiffusionMixin,
|
120 |
+
TextualInversionLoaderMixin,
|
121 |
+
FromSingleFileMixin,
|
122 |
+
StableDiffusionXLLoraLoaderMixin,
|
123 |
+
):
|
124 |
+
r"""
|
125 |
+
Pipeline for pixel-level image editing by following text instructions. Based on Stable Diffusion XL.
|
126 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
127 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
128 |
+
The pipeline also inherits the following loading methods:
|
129 |
+
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
130 |
+
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
131 |
+
- [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
132 |
+
- [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
133 |
+
Args:
|
134 |
+
vae ([`AutoencoderKL`]):
|
135 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
136 |
+
text_encoder ([`CLIPTextModel`]):
|
137 |
+
Frozen text-encoder. Stable Diffusion XL uses the text portion of
|
138 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
139 |
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
140 |
+
text_encoder_2 ([` CLIPTextModelWithProjection`]):
|
141 |
+
Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of
|
142 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
|
143 |
+
specifically the
|
144 |
+
[laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
|
145 |
+
variant.
|
146 |
+
tokenizer (`CLIPTokenizer`):
|
147 |
+
Tokenizer of class
|
148 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
149 |
+
tokenizer_2 (`CLIPTokenizer`):
|
150 |
+
Second Tokenizer of class
|
151 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
152 |
+
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
153 |
+
scheduler ([`SchedulerMixin`]):
|
154 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
155 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
156 |
+
requires_aesthetics_score (`bool`, *optional*, defaults to `"False"`):
|
157 |
+
Whether the `unet` requires a aesthetic_score condition to be passed during inference. Also see the config
|
158 |
+
of `stabilityai/stable-diffusion-xl-refiner-1-0`.
|
159 |
+
force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`):
|
160 |
+
Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of
|
161 |
+
`stabilityai/stable-diffusion-xl-base-1-0`.
|
162 |
+
add_watermarker (`bool`, *optional*):
|
163 |
+
Whether to use the [invisible_watermark library](https://github.com/ShieldMnt/invisible-watermark/) to
|
164 |
+
watermark output images. If not defined, it will default to True if the package is installed, otherwise no
|
165 |
+
watermarker will be used.
|
166 |
+
"""
|
167 |
+
|
168 |
+
model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae"
|
169 |
+
_optional_components = ["tokenizer", "tokenizer_2", "text_encoder", "text_encoder_2"]
|
170 |
+
|
171 |
+
def __init__(
|
172 |
+
self,
|
173 |
+
vae: AutoencoderKL,
|
174 |
+
text_encoder: CLIPTextModel,
|
175 |
+
text_encoder_2: CLIPTextModelWithProjection,
|
176 |
+
tokenizer: CLIPTokenizer,
|
177 |
+
tokenizer_2: CLIPTokenizer,
|
178 |
+
unet: UNet2DConditionModel,
|
179 |
+
scheduler: KarrasDiffusionSchedulers,
|
180 |
+
force_zeros_for_empty_prompt: bool = True,
|
181 |
+
add_watermarker: Optional[bool] = None,
|
182 |
+
):
|
183 |
+
super().__init__()
|
184 |
+
|
185 |
+
self.register_modules(
|
186 |
+
vae=vae,
|
187 |
+
text_encoder=text_encoder,
|
188 |
+
text_encoder_2=text_encoder_2,
|
189 |
+
tokenizer=tokenizer,
|
190 |
+
tokenizer_2=tokenizer_2,
|
191 |
+
unet=unet,
|
192 |
+
scheduler=scheduler,
|
193 |
+
)
|
194 |
+
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
|
195 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
196 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
197 |
+
self.default_sample_size = self.unet.config.sample_size
|
198 |
+
|
199 |
+
add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available()
|
200 |
+
|
201 |
+
if add_watermarker:
|
202 |
+
self.watermark = StableDiffusionXLWatermarker()
|
203 |
+
else:
|
204 |
+
self.watermark = None
|
205 |
+
|
206 |
+
def encode_prompt(
|
207 |
+
self,
|
208 |
+
prompt: str,
|
209 |
+
prompt_2: Optional[str] = None,
|
210 |
+
device: Optional[torch.device] = None,
|
211 |
+
num_images_per_prompt: int = 1,
|
212 |
+
do_classifier_free_guidance: bool = True,
|
213 |
+
negative_prompt: Optional[str] = None,
|
214 |
+
negative_prompt_2: Optional[str] = None,
|
215 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
216 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
217 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
218 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
219 |
+
lora_scale: Optional[float] = None,
|
220 |
+
):
|
221 |
+
r"""
|
222 |
+
Encodes the prompt into text encoder hidden states.
|
223 |
+
Args:
|
224 |
+
prompt (`str` or `List[str]`, *optional*):
|
225 |
+
prompt to be encoded
|
226 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
227 |
+
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
228 |
+
used in both text-encoders
|
229 |
+
device: (`torch.device`):
|
230 |
+
torch device
|
231 |
+
num_images_per_prompt (`int`):
|
232 |
+
number of images that should be generated per prompt
|
233 |
+
do_classifier_free_guidance (`bool`):
|
234 |
+
whether to use classifier free guidance or not
|
235 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
236 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
237 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
238 |
+
less than `1`).
|
239 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
240 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
241 |
+
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
242 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
243 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
244 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
245 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
246 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
247 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
248 |
+
argument.
|
249 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
250 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
251 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
252 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
253 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
254 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
255 |
+
input argument.
|
256 |
+
lora_scale (`float`, *optional*):
|
257 |
+
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
258 |
+
"""
|
259 |
+
device = device or self._execution_device
|
260 |
+
|
261 |
+
# set lora scale so that monkey patched LoRA
|
262 |
+
# function of text encoder can correctly access it
|
263 |
+
if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin):
|
264 |
+
self._lora_scale = lora_scale
|
265 |
+
|
266 |
+
# dynamically adjust the LoRA scale
|
267 |
+
if self.text_encoder is not None:
|
268 |
+
if not USE_PEFT_BACKEND:
|
269 |
+
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
|
270 |
+
else:
|
271 |
+
scale_lora_layers(self.text_encoder, lora_scale)
|
272 |
+
|
273 |
+
if self.text_encoder_2 is not None:
|
274 |
+
if not USE_PEFT_BACKEND:
|
275 |
+
adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale)
|
276 |
+
else:
|
277 |
+
scale_lora_layers(self.text_encoder_2, lora_scale)
|
278 |
+
|
279 |
+
if prompt is not None and isinstance(prompt, str):
|
280 |
+
batch_size = 1
|
281 |
+
elif prompt is not None and isinstance(prompt, list):
|
282 |
+
batch_size = len(prompt)
|
283 |
+
else:
|
284 |
+
batch_size = prompt_embeds.shape[0]
|
285 |
+
|
286 |
+
# Define tokenizers and text encoders
|
287 |
+
tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
|
288 |
+
text_encoders = (
|
289 |
+
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
|
290 |
+
)
|
291 |
+
|
292 |
+
if prompt_embeds is None:
|
293 |
+
prompt_2 = prompt_2 or prompt
|
294 |
+
# textual inversion: process multi-vector tokens if necessary
|
295 |
+
prompt_embeds_list = []
|
296 |
+
prompts = [prompt, prompt_2]
|
297 |
+
for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
|
298 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
299 |
+
prompt = self.maybe_convert_prompt(prompt, tokenizer)
|
300 |
+
|
301 |
+
text_inputs = tokenizer(
|
302 |
+
prompt,
|
303 |
+
padding="max_length",
|
304 |
+
max_length=tokenizer.model_max_length,
|
305 |
+
truncation=True,
|
306 |
+
return_tensors="pt",
|
307 |
+
)
|
308 |
+
|
309 |
+
text_input_ids = text_inputs.input_ids
|
310 |
+
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
311 |
+
|
312 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
313 |
+
text_input_ids, untruncated_ids
|
314 |
+
):
|
315 |
+
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
|
316 |
+
logger.warning(
|
317 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
318 |
+
f" {tokenizer.model_max_length} tokens: {removed_text}"
|
319 |
+
)
|
320 |
+
|
321 |
+
prompt_embeds = text_encoder(
|
322 |
+
text_input_ids.to(device),
|
323 |
+
output_hidden_states=True,
|
324 |
+
)
|
325 |
+
|
326 |
+
# We are only ALWAYS interested in the pooled output of the final text encoder
|
327 |
+
pooled_prompt_embeds = prompt_embeds[0]
|
328 |
+
prompt_embeds = prompt_embeds.hidden_states[-2]
|
329 |
+
|
330 |
+
prompt_embeds_list.append(prompt_embeds)
|
331 |
+
|
332 |
+
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
|
333 |
+
|
334 |
+
# get unconditional embeddings for classifier free guidance
|
335 |
+
zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
|
336 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
|
337 |
+
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
|
338 |
+
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
|
339 |
+
elif do_classifier_free_guidance and negative_prompt_embeds is None:
|
340 |
+
negative_prompt = negative_prompt or ""
|
341 |
+
negative_prompt_2 = negative_prompt_2 or negative_prompt
|
342 |
+
|
343 |
+
uncond_tokens: List[str]
|
344 |
+
if prompt is not None and type(prompt) is not type(negative_prompt):
|
345 |
+
raise TypeError(
|
346 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
347 |
+
f" {type(prompt)}."
|
348 |
+
)
|
349 |
+
elif isinstance(negative_prompt, str):
|
350 |
+
uncond_tokens = [negative_prompt, negative_prompt_2]
|
351 |
+
elif batch_size != len(negative_prompt):
|
352 |
+
raise ValueError(
|
353 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
354 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
355 |
+
" the batch size of `prompt`."
|
356 |
+
)
|
357 |
+
else:
|
358 |
+
uncond_tokens = [negative_prompt, negative_prompt_2]
|
359 |
+
|
360 |
+
negative_prompt_embeds_list = []
|
361 |
+
for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
|
362 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
363 |
+
negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer)
|
364 |
+
|
365 |
+
max_length = prompt_embeds.shape[1]
|
366 |
+
uncond_input = tokenizer(
|
367 |
+
negative_prompt,
|
368 |
+
padding="max_length",
|
369 |
+
max_length=max_length,
|
370 |
+
truncation=True,
|
371 |
+
return_tensors="pt",
|
372 |
+
)
|
373 |
+
|
374 |
+
negative_prompt_embeds = text_encoder(
|
375 |
+
uncond_input.input_ids.to(device),
|
376 |
+
output_hidden_states=True,
|
377 |
+
)
|
378 |
+
# We are only ALWAYS interested in the pooled output of the final text encoder
|
379 |
+
negative_pooled_prompt_embeds = negative_prompt_embeds[0]
|
380 |
+
negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
|
381 |
+
|
382 |
+
negative_prompt_embeds_list.append(negative_prompt_embeds)
|
383 |
+
|
384 |
+
negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
|
385 |
+
|
386 |
+
prompt_embeds_dtype = self.text_encoder_2.dtype if self.text_encoder_2 is not None else self.unet.dtype
|
387 |
+
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
388 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
389 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
390 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
391 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
392 |
+
|
393 |
+
if do_classifier_free_guidance:
|
394 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
395 |
+
seq_len = negative_prompt_embeds.shape[1]
|
396 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
397 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
398 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
399 |
+
|
400 |
+
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
401 |
+
bs_embed * num_images_per_prompt, -1
|
402 |
+
)
|
403 |
+
if do_classifier_free_guidance:
|
404 |
+
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
405 |
+
bs_embed * num_images_per_prompt, -1
|
406 |
+
)
|
407 |
+
|
408 |
+
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
|
409 |
+
|
410 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
411 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
412 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
413 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
414 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
415 |
+
# and should be between [0, 1]
|
416 |
+
|
417 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
418 |
+
extra_step_kwargs = {}
|
419 |
+
if accepts_eta:
|
420 |
+
extra_step_kwargs["eta"] = eta
|
421 |
+
|
422 |
+
# check if the scheduler accepts generator
|
423 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
424 |
+
if accepts_generator:
|
425 |
+
extra_step_kwargs["generator"] = generator
|
426 |
+
return extra_step_kwargs
|
427 |
+
|
428 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_instruct_pix2pix.StableDiffusionInstructPix2PixPipeline.check_inputs
|
429 |
+
def check_inputs(
|
430 |
+
self,
|
431 |
+
prompt,
|
432 |
+
callback_steps,
|
433 |
+
negative_prompt=None,
|
434 |
+
prompt_embeds=None,
|
435 |
+
negative_prompt_embeds=None,
|
436 |
+
callback_on_step_end_tensor_inputs=None,
|
437 |
+
):
|
438 |
+
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
|
439 |
+
raise ValueError(
|
440 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
441 |
+
f" {type(callback_steps)}."
|
442 |
+
)
|
443 |
+
|
444 |
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
445 |
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
446 |
+
):
|
447 |
+
raise ValueError(
|
448 |
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
449 |
+
)
|
450 |
+
|
451 |
+
if prompt is not None and prompt_embeds is not None:
|
452 |
+
raise ValueError(
|
453 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
454 |
+
" only forward one of the two."
|
455 |
+
)
|
456 |
+
elif prompt is None and prompt_embeds is None:
|
457 |
+
raise ValueError(
|
458 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
459 |
+
)
|
460 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
461 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
462 |
+
|
463 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
464 |
+
raise ValueError(
|
465 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
466 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
467 |
+
)
|
468 |
+
|
469 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
470 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
471 |
+
raise ValueError(
|
472 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
473 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
474 |
+
f" {negative_prompt_embeds.shape}."
|
475 |
+
)
|
476 |
+
|
477 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
478 |
+
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
479 |
+
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
480 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
481 |
+
raise ValueError(
|
482 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
483 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
484 |
+
)
|
485 |
+
|
486 |
+
if latents is None:
|
487 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
488 |
+
else:
|
489 |
+
latents = latents.to(device)
|
490 |
+
|
491 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
492 |
+
latents = latents * self.scheduler.init_noise_sigma
|
493 |
+
return latents
|
494 |
+
|
495 |
+
def prepare_image_latents(
|
496 |
+
self, image, batch_size, num_images_per_prompt, dtype, device, do_classifier_free_guidance, generator=None
|
497 |
+
):
|
498 |
+
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
|
499 |
+
raise ValueError(
|
500 |
+
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
|
501 |
+
)
|
502 |
+
|
503 |
+
image = image.to(device=device, dtype=dtype)
|
504 |
+
|
505 |
+
batch_size = batch_size * num_images_per_prompt
|
506 |
+
|
507 |
+
if image.shape[1] == 4:
|
508 |
+
image_latents = image
|
509 |
+
else:
|
510 |
+
# make sure the VAE is in float32 mode, as it overflows in float16
|
511 |
+
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
512 |
+
if needs_upcasting:
|
513 |
+
self.upcast_vae()
|
514 |
+
image = image.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
515 |
+
|
516 |
+
image_latents = retrieve_latents(self.vae.encode(image), sample_mode="argmax")
|
517 |
+
|
518 |
+
# cast back to fp16 if needed
|
519 |
+
if needs_upcasting:
|
520 |
+
self.vae.to(dtype=torch.float16)
|
521 |
+
|
522 |
+
if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
|
523 |
+
# expand image_latents for batch_size
|
524 |
+
deprecation_message = (
|
525 |
+
f"You have passed {batch_size} text prompts (`prompt`), but only {image_latents.shape[0]} initial"
|
526 |
+
" images (`image`). Initial images are now duplicating to match the number of text prompts. Note"
|
527 |
+
" that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update"
|
528 |
+
" your script to pass as many initial images as text prompts to suppress this warning."
|
529 |
+
)
|
530 |
+
deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False)
|
531 |
+
additional_image_per_prompt = batch_size // image_latents.shape[0]
|
532 |
+
image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0)
|
533 |
+
elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0:
|
534 |
+
raise ValueError(
|
535 |
+
f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts."
|
536 |
+
)
|
537 |
+
else:
|
538 |
+
image_latents = torch.cat([image_latents], dim=0)
|
539 |
+
|
540 |
+
if do_classifier_free_guidance:
|
541 |
+
uncond_image_latents = torch.zeros_like(image_latents)
|
542 |
+
image_latents = torch.cat([image_latents, image_latents, uncond_image_latents], dim=0)
|
543 |
+
|
544 |
+
if image_latents.dtype != self.vae.dtype:
|
545 |
+
image_latents = image_latents.to(dtype=self.vae.dtype)
|
546 |
+
|
547 |
+
return image_latents
|
548 |
+
|
549 |
+
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline._get_add_time_ids
|
550 |
+
def _get_add_time_ids(
|
551 |
+
self, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None
|
552 |
+
):
|
553 |
+
add_time_ids = list(original_size + crops_coords_top_left + target_size)
|
554 |
+
|
555 |
+
passed_add_embed_dim = (
|
556 |
+
self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim
|
557 |
+
)
|
558 |
+
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
|
559 |
+
|
560 |
+
if expected_add_embed_dim != passed_add_embed_dim:
|
561 |
+
raise ValueError(
|
562 |
+
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
|
563 |
+
)
|
564 |
+
|
565 |
+
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
|
566 |
+
return add_time_ids
|
567 |
+
|
568 |
+
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.upcast_vae
|
569 |
+
def upcast_vae(self):
|
570 |
+
dtype = self.vae.dtype
|
571 |
+
self.vae.to(dtype=torch.float32)
|
572 |
+
use_torch_2_0_or_xformers = isinstance(
|
573 |
+
self.vae.decoder.mid_block.attentions[0].processor,
|
574 |
+
(
|
575 |
+
AttnProcessor2_0,
|
576 |
+
XFormersAttnProcessor,
|
577 |
+
LoRAXFormersAttnProcessor,
|
578 |
+
LoRAAttnProcessor2_0,
|
579 |
+
FusedAttnProcessor2_0,
|
580 |
+
),
|
581 |
+
)
|
582 |
+
# if xformers or torch_2_0 is used attention block does not need
|
583 |
+
# to be in float32 which can save lots of memory
|
584 |
+
if use_torch_2_0_or_xformers:
|
585 |
+
self.vae.post_quant_conv.to(dtype)
|
586 |
+
self.vae.decoder.conv_in.to(dtype)
|
587 |
+
self.vae.decoder.mid_block.to(dtype)
|
588 |
+
|
589 |
+
@torch.no_grad()
|
590 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
591 |
+
def __call__(
|
592 |
+
self,
|
593 |
+
prompt: Union[str, List[str]] = None,
|
594 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
595 |
+
image: PipelineImageInput = None,
|
596 |
+
height: Optional[int] = None,
|
597 |
+
width: Optional[int] = None,
|
598 |
+
num_inference_steps: int = 100,
|
599 |
+
denoising_end: Optional[float] = None,
|
600 |
+
guidance_scale: float = 5.0,
|
601 |
+
image_guidance_scale: float = 1.5,
|
602 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
603 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
604 |
+
num_images_per_prompt: Optional[int] = 1,
|
605 |
+
eta: float = 0.0,
|
606 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
607 |
+
latents: Optional[torch.FloatTensor] = None,
|
608 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
609 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
610 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
611 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
612 |
+
output_type: Optional[str] = "pil",
|
613 |
+
return_dict: bool = True,
|
614 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
615 |
+
callback_steps: int = 1,
|
616 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
617 |
+
guidance_rescale: float = 0.0,
|
618 |
+
original_size: Tuple[int, int] = None,
|
619 |
+
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
620 |
+
target_size: Tuple[int, int] = None,
|
621 |
+
):
|
622 |
+
r"""
|
623 |
+
Function invoked when calling the pipeline for generation.
|
624 |
+
Args:
|
625 |
+
prompt (`str` or `List[str]`, *optional*):
|
626 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
627 |
+
instead.
|
628 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
629 |
+
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
630 |
+
used in both text-encoders
|
631 |
+
image (`torch.FloatTensor` or `PIL.Image.Image` or `np.ndarray` or `List[torch.FloatTensor]` or `List[PIL.Image.Image]` or `List[np.ndarray]`):
|
632 |
+
The image(s) to modify with the pipeline.
|
633 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
634 |
+
The height in pixels of the generated image.
|
635 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
636 |
+
The width in pixels of the generated image.
|
637 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
638 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
639 |
+
expense of slower inference.
|
640 |
+
denoising_end (`float`, *optional*):
|
641 |
+
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
|
642 |
+
completed before it is intentionally prematurely terminated. As a result, the returned sample will
|
643 |
+
still retain a substantial amount of noise as determined by the discrete timesteps selected by the
|
644 |
+
scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
|
645 |
+
"Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
|
646 |
+
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
|
647 |
+
guidance_scale (`float`, *optional*, defaults to 5.0):
|
648 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
649 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
650 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
651 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
652 |
+
usually at the expense of lower image quality.
|
653 |
+
image_guidance_scale (`float`, *optional*, defaults to 1.5):
|
654 |
+
Image guidance scale is to push the generated image towards the initial image `image`. Image guidance
|
655 |
+
scale is enabled by setting `image_guidance_scale > 1`. Higher image guidance scale encourages to
|
656 |
+
generate images that are closely linked to the source image `image`, usually at the expense of lower
|
657 |
+
image quality. This pipeline requires a value of at least `1`.
|
658 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
659 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
660 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
661 |
+
less than `1`).
|
662 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
663 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
664 |
+
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders.
|
665 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
666 |
+
The number of images to generate per prompt.
|
667 |
+
eta (`float`, *optional*, defaults to 0.0):
|
668 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
669 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
670 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
671 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
672 |
+
to make generation deterministic.
|
673 |
+
latents (`torch.FloatTensor`, *optional*):
|
674 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
675 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
676 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
677 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
678 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
679 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
680 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
681 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
682 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
683 |
+
argument.
|
684 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
685 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
686 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
687 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
688 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
689 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
690 |
+
input argument.
|
691 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
692 |
+
The output format of the generate image. Choose between
|
693 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
694 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
695 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] instead of a
|
696 |
+
plain tuple.
|
697 |
+
callback (`Callable`, *optional*):
|
698 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
699 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
700 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
701 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
702 |
+
called at every step.
|
703 |
+
cross_attention_kwargs (`dict`, *optional*):
|
704 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
705 |
+
`self.processor` in
|
706 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
707 |
+
guidance_rescale (`float`, *optional*, defaults to 0.0):
|
708 |
+
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
|
709 |
+
Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
|
710 |
+
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
|
711 |
+
Guidance rescale factor should fix overexposure when using zero terminal SNR.
|
712 |
+
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
713 |
+
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
|
714 |
+
`original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
|
715 |
+
explained in section 2.2 of
|
716 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
717 |
+
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
718 |
+
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
|
719 |
+
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
|
720 |
+
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
|
721 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
722 |
+
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
723 |
+
For most cases, `target_size` should be set to the desired height and width of the generated image. If
|
724 |
+
not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
|
725 |
+
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
726 |
+
aesthetic_score (`float`, *optional*, defaults to 6.0):
|
727 |
+
Used to simulate an aesthetic score of the generated image by influencing the positive text condition.
|
728 |
+
Part of SDXL's micro-conditioning as explained in section 2.2 of
|
729 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
730 |
+
negative_aesthetic_score (`float`, *optional*, defaults to 2.5):
|
731 |
+
Part of SDXL's micro-conditioning as explained in section 2.2 of
|
732 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). Can be used to
|
733 |
+
simulate an aesthetic score of the generated image by influencing the negative text condition.
|
734 |
+
Examples:
|
735 |
+
Returns:
|
736 |
+
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`:
|
737 |
+
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
|
738 |
+
`tuple`. When returning a tuple, the first element is a list with the generated images.
|
739 |
+
"""
|
740 |
+
# 0. Default height and width to unet
|
741 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
742 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
743 |
+
|
744 |
+
original_size = original_size or (height, width)
|
745 |
+
target_size = target_size or (height, width)
|
746 |
+
|
747 |
+
# 1. Check inputs. Raise error if not correct
|
748 |
+
self.check_inputs(prompt, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds)
|
749 |
+
|
750 |
+
if image is None:
|
751 |
+
raise ValueError("`image` input cannot be undefined.")
|
752 |
+
|
753 |
+
# 2. Define call parameters
|
754 |
+
if prompt is not None and isinstance(prompt, str):
|
755 |
+
batch_size = 1
|
756 |
+
elif prompt is not None and isinstance(prompt, list):
|
757 |
+
batch_size = len(prompt)
|
758 |
+
else:
|
759 |
+
batch_size = prompt_embeds.shape[0]
|
760 |
+
|
761 |
+
device = self._execution_device
|
762 |
+
|
763 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
764 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
765 |
+
# corresponds to doing no classifier free guidance.
|
766 |
+
do_classifier_free_guidance = guidance_scale > 1.0 and image_guidance_scale >= 1.0
|
767 |
+
|
768 |
+
# 3. Encode input prompt
|
769 |
+
text_encoder_lora_scale = (
|
770 |
+
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
771 |
+
)
|
772 |
+
(
|
773 |
+
prompt_embeds,
|
774 |
+
negative_prompt_embeds,
|
775 |
+
pooled_prompt_embeds,
|
776 |
+
negative_pooled_prompt_embeds,
|
777 |
+
) = self.encode_prompt(
|
778 |
+
prompt=prompt,
|
779 |
+
prompt_2=prompt_2,
|
780 |
+
device=device,
|
781 |
+
num_images_per_prompt=num_images_per_prompt,
|
782 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
783 |
+
negative_prompt=negative_prompt,
|
784 |
+
negative_prompt_2=negative_prompt_2,
|
785 |
+
prompt_embeds=prompt_embeds,
|
786 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
787 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
788 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
789 |
+
lora_scale=text_encoder_lora_scale,
|
790 |
+
)
|
791 |
+
|
792 |
+
# 4. Preprocess image
|
793 |
+
image = self.image_processor.preprocess(image, height=height, width=width).to(device)
|
794 |
+
|
795 |
+
# 5. Prepare timesteps
|
796 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
797 |
+
timesteps = self.scheduler.timesteps
|
798 |
+
|
799 |
+
# 6. Prepare Image latents
|
800 |
+
image_latents = self.prepare_image_latents(
|
801 |
+
image,
|
802 |
+
batch_size,
|
803 |
+
num_images_per_prompt,
|
804 |
+
prompt_embeds.dtype,
|
805 |
+
device,
|
806 |
+
do_classifier_free_guidance,
|
807 |
+
)
|
808 |
+
|
809 |
+
image_latents = image_latents * self.vae.config.scaling_factor
|
810 |
+
|
811 |
+
# 7. Prepare latent variables
|
812 |
+
num_channels_latents = self.vae.config.latent_channels
|
813 |
+
latents = self.prepare_latents(
|
814 |
+
batch_size * num_images_per_prompt,
|
815 |
+
num_channels_latents,
|
816 |
+
height,
|
817 |
+
width,
|
818 |
+
prompt_embeds.dtype,
|
819 |
+
device,
|
820 |
+
generator,
|
821 |
+
latents,
|
822 |
+
)
|
823 |
+
|
824 |
+
# 8. Check that shapes of latents and image match the UNet channels
|
825 |
+
num_channels_image = image_latents.shape[1]
|
826 |
+
if num_channels_latents + num_channels_image != self.unet.config.in_channels:
|
827 |
+
raise ValueError(
|
828 |
+
f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects"
|
829 |
+
f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +"
|
830 |
+
f" `num_channels_image`: {num_channels_image} "
|
831 |
+
f" = {num_channels_latents + num_channels_image}. Please verify the config of"
|
832 |
+
" `pipeline.unet` or your `image` input."
|
833 |
+
)
|
834 |
+
|
835 |
+
# 9. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
836 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
837 |
+
|
838 |
+
# 10. Prepare added time ids & embeddings
|
839 |
+
add_text_embeds = pooled_prompt_embeds
|
840 |
+
if self.text_encoder_2 is None:
|
841 |
+
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
|
842 |
+
else:
|
843 |
+
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
|
844 |
+
|
845 |
+
add_time_ids = self._get_add_time_ids(
|
846 |
+
original_size,
|
847 |
+
crops_coords_top_left,
|
848 |
+
target_size,
|
849 |
+
dtype=prompt_embeds.dtype,
|
850 |
+
text_encoder_projection_dim=text_encoder_projection_dim,
|
851 |
+
)
|
852 |
+
|
853 |
+
if do_classifier_free_guidance:
|
854 |
+
# The extra concat similar to how it's done in SD InstructPix2Pix.
|
855 |
+
prompt_embeds = torch.cat([prompt_embeds, negative_prompt_embeds, negative_prompt_embeds], dim=0)
|
856 |
+
add_text_embeds = torch.cat(
|
857 |
+
[add_text_embeds, negative_pooled_prompt_embeds, negative_pooled_prompt_embeds], dim=0
|
858 |
+
)
|
859 |
+
add_time_ids = torch.cat([add_time_ids, add_time_ids, add_time_ids], dim=0)
|
860 |
+
|
861 |
+
prompt_embeds = prompt_embeds.to(device)
|
862 |
+
add_text_embeds = add_text_embeds.to(device)
|
863 |
+
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
|
864 |
+
|
865 |
+
# 11. Denoising loop
|
866 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
867 |
+
if denoising_end is not None and isinstance(denoising_end, float) and denoising_end > 0 and denoising_end < 1:
|
868 |
+
discrete_timestep_cutoff = int(
|
869 |
+
round(
|
870 |
+
self.scheduler.config.num_train_timesteps
|
871 |
+
- (denoising_end * self.scheduler.config.num_train_timesteps)
|
872 |
+
)
|
873 |
+
)
|
874 |
+
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
|
875 |
+
timesteps = timesteps[:num_inference_steps]
|
876 |
+
|
877 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
878 |
+
for i, t in enumerate(timesteps):
|
879 |
+
# Expand the latents if we are doing classifier free guidance.
|
880 |
+
# The latents are expanded 3 times because for pix2pix the guidance
|
881 |
+
# is applied for both the text and the input image.
|
882 |
+
latent_model_input = torch.cat([latents] * 3) if do_classifier_free_guidance else latents
|
883 |
+
|
884 |
+
# concat latents, image_latents in the channel dimension
|
885 |
+
scaled_latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
886 |
+
scaled_latent_model_input = torch.cat([scaled_latent_model_input, image_latents], dim=1)
|
887 |
+
|
888 |
+
# predict the noise residual
|
889 |
+
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
890 |
+
noise_pred = self.unet(
|
891 |
+
scaled_latent_model_input,
|
892 |
+
t,
|
893 |
+
encoder_hidden_states=prompt_embeds,
|
894 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
895 |
+
added_cond_kwargs=added_cond_kwargs,
|
896 |
+
return_dict=False,
|
897 |
+
)[0]
|
898 |
+
|
899 |
+
# perform guidance
|
900 |
+
if do_classifier_free_guidance:
|
901 |
+
noise_pred_text, noise_pred_image, noise_pred_uncond = noise_pred.chunk(3)
|
902 |
+
noise_pred = (
|
903 |
+
noise_pred_uncond
|
904 |
+
+ guidance_scale * (noise_pred_text - noise_pred_image)
|
905 |
+
+ image_guidance_scale * (noise_pred_image - noise_pred_uncond)
|
906 |
+
)
|
907 |
+
|
908 |
+
if do_classifier_free_guidance and guidance_rescale > 0.0:
|
909 |
+
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
910 |
+
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
911 |
+
|
912 |
+
# compute the previous noisy sample x_t -> x_t-1
|
913 |
+
latents_dtype = latents.dtype
|
914 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
915 |
+
if latents.dtype != latents_dtype:
|
916 |
+
if torch.backends.mps.is_available():
|
917 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
918 |
+
latents = latents.to(latents_dtype)
|
919 |
+
|
920 |
+
# call the callback, if provided
|
921 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
922 |
+
progress_bar.update()
|
923 |
+
if callback is not None and i % callback_steps == 0:
|
924 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
925 |
+
callback(step_idx, t, latents)
|
926 |
+
|
927 |
+
if XLA_AVAILABLE:
|
928 |
+
xm.mark_step()
|
929 |
+
|
930 |
+
if not output_type == "latent":
|
931 |
+
# make sure the VAE is in float32 mode, as it overflows in float16
|
932 |
+
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
933 |
+
|
934 |
+
if needs_upcasting:
|
935 |
+
self.upcast_vae()
|
936 |
+
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
937 |
+
elif latents.dtype != self.vae.dtype:
|
938 |
+
if torch.backends.mps.is_available():
|
939 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
940 |
+
self.vae = self.vae.to(latents.dtype)
|
941 |
+
|
942 |
+
# unscale/denormalize the latents
|
943 |
+
# denormalize with the mean and std if available and not None
|
944 |
+
has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None
|
945 |
+
has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None
|
946 |
+
if has_latents_mean and has_latents_std:
|
947 |
+
latents_mean = (
|
948 |
+
torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype)
|
949 |
+
)
|
950 |
+
latents_std = (
|
951 |
+
torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype)
|
952 |
+
)
|
953 |
+
latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean
|
954 |
+
else:
|
955 |
+
latents = latents / self.vae.config.scaling_factor
|
956 |
+
|
957 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
958 |
+
|
959 |
+
# cast back to fp16 if needed
|
960 |
+
if needs_upcasting:
|
961 |
+
self.vae.to(dtype=torch.float16)
|
962 |
+
else:
|
963 |
+
return StableDiffusionXLPipelineOutput(images=latents)
|
964 |
+
|
965 |
+
# apply watermark if available
|
966 |
+
if self.watermark is not None:
|
967 |
+
image = self.watermark.apply_watermark(image)
|
968 |
+
|
969 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
970 |
+
|
971 |
+
# Offload all models
|
972 |
+
self.maybe_free_model_hooks()
|
973 |
+
|
974 |
+
if not return_dict:
|
975 |
+
return (image,)
|
976 |
+
|
977 |
+
return StableDiffusionXLPipelineOutput(images=image)
|
black_box_image_edit/cosxl/utils.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
|
5 |
+
def set_timesteps_patched(self, num_inference_steps: int, device = None):
|
6 |
+
self.num_inference_steps = num_inference_steps
|
7 |
+
|
8 |
+
ramp = np.linspace(0, 1, self.num_inference_steps)
|
9 |
+
sigmas = torch.linspace(math.log(self.config.sigma_min), math.log(self.config.sigma_max), len(ramp)).exp().flip(0)
|
10 |
+
|
11 |
+
sigmas = (sigmas).to(dtype=torch.float32, device=device)
|
12 |
+
self.timesteps = self.precondition_noise(sigmas)
|
13 |
+
|
14 |
+
self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
|
15 |
+
self._step_index = None
|
16 |
+
self._begin_index = None
|
17 |
+
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
|
black_box_image_edit/cosxl_edit.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from huggingface_hub import hf_hub_download
|
3 |
+
import torch
|
4 |
+
import PIL
|
5 |
+
|
6 |
+
class CosXLEdit():
|
7 |
+
"""
|
8 |
+
Edit Cos Stable Diffusion XL 1.0 Base is tuned to use a Cosine-Continuous EDM VPred schedule, and then upgraded to perform instructed image editing.
|
9 |
+
Reference: https://huggingface.co/stabilityai/cosxl
|
10 |
+
"""
|
11 |
+
def __init__(self, device="cuda"):
|
12 |
+
"""
|
13 |
+
Attributes:
|
14 |
+
pipe (CosStableDiffusionXLInstructPix2PixPipeline): The InstructPix2Pix pipeline for image transformation.
|
15 |
+
|
16 |
+
Args:
|
17 |
+
device (str, optional): Device on which the pipeline runs. Defaults to "cuda".
|
18 |
+
"""
|
19 |
+
from diffusers import EDMEulerScheduler
|
20 |
+
from .cosxl.custom_pipeline import CosStableDiffusionXLInstructPix2PixPipeline
|
21 |
+
from .cosxl.utils import set_timesteps_patched
|
22 |
+
|
23 |
+
EDMEulerScheduler.set_timesteps = set_timesteps_patched
|
24 |
+
edit_file = hf_hub_download(repo_id="stabilityai/cosxl", filename="cosxl_edit.safetensors")
|
25 |
+
self.pipe = CosStableDiffusionXLInstructPix2PixPipeline.from_single_file(
|
26 |
+
edit_file, num_in_channels=8
|
27 |
+
)
|
28 |
+
self.pipe.scheduler = EDMEulerScheduler(sigma_min=0.002, sigma_max=120.0, sigma_data=1.0, prediction_type="v_prediction")
|
29 |
+
self.pipe.to(device)
|
30 |
+
|
31 |
+
def infer_one_image(self, src_image: PIL.Image.Image = None, src_prompt: str = None, target_prompt: str = None, instruct_prompt: str = None, seed: int = 42, negative_prompt=""):
|
32 |
+
"""
|
33 |
+
Modifies the source image based on the provided instruction prompt.
|
34 |
+
|
35 |
+
Args:
|
36 |
+
src_image (PIL.Image.Image): Source image in RGB format.
|
37 |
+
instruct_prompt (str): Caption for editing the image.
|
38 |
+
seed (int, optional): Seed for random generator. Defaults to 42.
|
39 |
+
|
40 |
+
Returns:
|
41 |
+
PIL.Image.Image: The transformed image.
|
42 |
+
"""
|
43 |
+
src_image = src_image.convert('RGB') # force it to RGB format
|
44 |
+
generator = torch.manual_seed(seed)
|
45 |
+
|
46 |
+
resolution = 1024
|
47 |
+
preprocessed_image = src_image.resize((resolution, resolution))
|
48 |
+
image = self.pipe(prompt=instruct_prompt,
|
49 |
+
image=preprocessed_image,
|
50 |
+
height=resolution,
|
51 |
+
width=resolution,
|
52 |
+
negative_prompt=negative_prompt,
|
53 |
+
guidance_scale=7,
|
54 |
+
num_inference_steps=20,
|
55 |
+
generator=generator).images[0]
|
56 |
+
image = image.resize((src_image.width, src_image.height))
|
57 |
+
|
58 |
+
return image
|
black_box_image_edit/instantstyle.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline
|
2 |
+
import cv2
|
3 |
+
import torch
|
4 |
+
import PIL
|
5 |
+
import numpy as np
|
6 |
+
import os
|
7 |
+
|
8 |
+
class InstantStyle():
|
9 |
+
def __init__(self,
|
10 |
+
device="cuda",
|
11 |
+
weight="stabilityai/stable-diffusion-xl-base-1.0",
|
12 |
+
control_weight="diffusers/controlnet-canny-sdxl-1.0",
|
13 |
+
custom_sdxl_models_folder="sdxl_models"):
|
14 |
+
from .ip_adapter import IPAdapterXL
|
15 |
+
|
16 |
+
controlnet = ControlNetModel.from_pretrained(control_weight,
|
17 |
+
use_safetensors=False,
|
18 |
+
torch_dtype=torch.float16).to(device)
|
19 |
+
# load SDXL pipeline
|
20 |
+
sdxl_control_pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
21 |
+
weight,
|
22 |
+
controlnet=controlnet,
|
23 |
+
torch_dtype=torch.float16,
|
24 |
+
add_watermarker=False,
|
25 |
+
)
|
26 |
+
sdxl_control_pipe.enable_vae_tiling()
|
27 |
+
self.ip_model = IPAdapterXL(sdxl_control_pipe,
|
28 |
+
os.path.join(custom_sdxl_models_folder, "image_encoder"),
|
29 |
+
os.path.join(custom_sdxl_models_folder, "ip-adapter_sdxl.bin"),
|
30 |
+
device,
|
31 |
+
target_blocks=["up_blocks.0.attentions.1"])
|
32 |
+
|
33 |
+
|
34 |
+
def infer_one_image(self, src_image: PIL.Image.Image = None,
|
35 |
+
style_image: PIL.Image.Image = None,
|
36 |
+
prompt: str = "masterpiece, best quality, high quality",
|
37 |
+
seed: int = 42,
|
38 |
+
negative_prompt="text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry"):
|
39 |
+
|
40 |
+
src_image = src_image.convert('RGB') # force it to RGB format
|
41 |
+
style_image = style_image.convert('RGB') # force it to RGB format
|
42 |
+
|
43 |
+
def pil_to_cv2(image_pil):
|
44 |
+
image_np = np.array(image_pil)
|
45 |
+
image_cv2 = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
|
46 |
+
|
47 |
+
return image_cv2
|
48 |
+
# control image
|
49 |
+
input_image = pil_to_cv2(src_image)
|
50 |
+
detected_map = cv2.Canny(input_image, 50, 200)
|
51 |
+
canny_map = PIL.Image.fromarray(cv2.cvtColor(detected_map, cv2.COLOR_BGR2RGB))
|
52 |
+
|
53 |
+
# generate image
|
54 |
+
if prompt is None:
|
55 |
+
prompt = "masterpiece, best quality, high quality"
|
56 |
+
image = self.ip_model.generate(pil_image=style_image,
|
57 |
+
prompt=prompt,
|
58 |
+
negative_prompt=negative_prompt,
|
59 |
+
scale=1.0,
|
60 |
+
guidance_scale=5,
|
61 |
+
num_samples=1,
|
62 |
+
num_inference_steps=30,
|
63 |
+
seed=seed,
|
64 |
+
image=canny_map,
|
65 |
+
controlnet_conditioning_scale=0.6,
|
66 |
+
)[0]
|
67 |
+
return image
|
black_box_image_edit/ip_adapter/__init__.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .ip_adapter import IPAdapter, IPAdapterPlus, IPAdapterPlusXL, IPAdapterXL, IPAdapterFull
|
2 |
+
|
3 |
+
__all__ = [
|
4 |
+
"IPAdapter",
|
5 |
+
"IPAdapterPlus",
|
6 |
+
"IPAdapterPlusXL",
|
7 |
+
"IPAdapterXL",
|
8 |
+
"IPAdapterFull",
|
9 |
+
]
|
black_box_image_edit/ip_adapter/attention_processor.py
ADDED
@@ -0,0 +1,562 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# modified from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
|
6 |
+
|
7 |
+
class AttnProcessor(nn.Module):
|
8 |
+
r"""
|
9 |
+
Default processor for performing attention-related computations.
|
10 |
+
"""
|
11 |
+
|
12 |
+
def __init__(
|
13 |
+
self,
|
14 |
+
hidden_size=None,
|
15 |
+
cross_attention_dim=None,
|
16 |
+
):
|
17 |
+
super().__init__()
|
18 |
+
|
19 |
+
def __call__(
|
20 |
+
self,
|
21 |
+
attn,
|
22 |
+
hidden_states,
|
23 |
+
encoder_hidden_states=None,
|
24 |
+
attention_mask=None,
|
25 |
+
temb=None,
|
26 |
+
):
|
27 |
+
residual = hidden_states
|
28 |
+
|
29 |
+
if attn.spatial_norm is not None:
|
30 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
31 |
+
|
32 |
+
input_ndim = hidden_states.ndim
|
33 |
+
|
34 |
+
if input_ndim == 4:
|
35 |
+
batch_size, channel, height, width = hidden_states.shape
|
36 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
37 |
+
|
38 |
+
batch_size, sequence_length, _ = (
|
39 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
40 |
+
)
|
41 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
42 |
+
|
43 |
+
if attn.group_norm is not None:
|
44 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
45 |
+
|
46 |
+
query = attn.to_q(hidden_states)
|
47 |
+
|
48 |
+
if encoder_hidden_states is None:
|
49 |
+
encoder_hidden_states = hidden_states
|
50 |
+
elif attn.norm_cross:
|
51 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
52 |
+
|
53 |
+
key = attn.to_k(encoder_hidden_states)
|
54 |
+
value = attn.to_v(encoder_hidden_states)
|
55 |
+
|
56 |
+
query = attn.head_to_batch_dim(query)
|
57 |
+
key = attn.head_to_batch_dim(key)
|
58 |
+
value = attn.head_to_batch_dim(value)
|
59 |
+
|
60 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
61 |
+
hidden_states = torch.bmm(attention_probs, value)
|
62 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
63 |
+
|
64 |
+
# linear proj
|
65 |
+
hidden_states = attn.to_out[0](hidden_states)
|
66 |
+
# dropout
|
67 |
+
hidden_states = attn.to_out[1](hidden_states)
|
68 |
+
|
69 |
+
if input_ndim == 4:
|
70 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
71 |
+
|
72 |
+
if attn.residual_connection:
|
73 |
+
hidden_states = hidden_states + residual
|
74 |
+
|
75 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
76 |
+
|
77 |
+
return hidden_states
|
78 |
+
|
79 |
+
|
80 |
+
class IPAttnProcessor(nn.Module):
|
81 |
+
r"""
|
82 |
+
Attention processor for IP-Adapater.
|
83 |
+
Args:
|
84 |
+
hidden_size (`int`):
|
85 |
+
The hidden size of the attention layer.
|
86 |
+
cross_attention_dim (`int`):
|
87 |
+
The number of channels in the `encoder_hidden_states`.
|
88 |
+
scale (`float`, defaults to 1.0):
|
89 |
+
the weight scale of image prompt.
|
90 |
+
num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
|
91 |
+
The context length of the image features.
|
92 |
+
"""
|
93 |
+
|
94 |
+
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4, skip=False):
|
95 |
+
super().__init__()
|
96 |
+
|
97 |
+
self.hidden_size = hidden_size
|
98 |
+
self.cross_attention_dim = cross_attention_dim
|
99 |
+
self.scale = scale
|
100 |
+
self.num_tokens = num_tokens
|
101 |
+
self.skip = skip
|
102 |
+
|
103 |
+
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
104 |
+
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
105 |
+
|
106 |
+
def __call__(
|
107 |
+
self,
|
108 |
+
attn,
|
109 |
+
hidden_states,
|
110 |
+
encoder_hidden_states=None,
|
111 |
+
attention_mask=None,
|
112 |
+
temb=None,
|
113 |
+
):
|
114 |
+
residual = hidden_states
|
115 |
+
|
116 |
+
if attn.spatial_norm is not None:
|
117 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
118 |
+
|
119 |
+
input_ndim = hidden_states.ndim
|
120 |
+
|
121 |
+
if input_ndim == 4:
|
122 |
+
batch_size, channel, height, width = hidden_states.shape
|
123 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
124 |
+
|
125 |
+
batch_size, sequence_length, _ = (
|
126 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
127 |
+
)
|
128 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
129 |
+
|
130 |
+
if attn.group_norm is not None:
|
131 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
132 |
+
|
133 |
+
query = attn.to_q(hidden_states)
|
134 |
+
|
135 |
+
if encoder_hidden_states is None:
|
136 |
+
encoder_hidden_states = hidden_states
|
137 |
+
else:
|
138 |
+
# get encoder_hidden_states, ip_hidden_states
|
139 |
+
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
|
140 |
+
encoder_hidden_states, ip_hidden_states = (
|
141 |
+
encoder_hidden_states[:, :end_pos, :],
|
142 |
+
encoder_hidden_states[:, end_pos:, :],
|
143 |
+
)
|
144 |
+
if attn.norm_cross:
|
145 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
146 |
+
|
147 |
+
key = attn.to_k(encoder_hidden_states)
|
148 |
+
value = attn.to_v(encoder_hidden_states)
|
149 |
+
|
150 |
+
query = attn.head_to_batch_dim(query)
|
151 |
+
key = attn.head_to_batch_dim(key)
|
152 |
+
value = attn.head_to_batch_dim(value)
|
153 |
+
|
154 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
155 |
+
hidden_states = torch.bmm(attention_probs, value)
|
156 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
157 |
+
|
158 |
+
if not self.skip:
|
159 |
+
# for ip-adapter
|
160 |
+
ip_key = self.to_k_ip(ip_hidden_states)
|
161 |
+
ip_value = self.to_v_ip(ip_hidden_states)
|
162 |
+
|
163 |
+
ip_key = attn.head_to_batch_dim(ip_key)
|
164 |
+
ip_value = attn.head_to_batch_dim(ip_value)
|
165 |
+
|
166 |
+
ip_attention_probs = attn.get_attention_scores(query, ip_key, None)
|
167 |
+
self.attn_map = ip_attention_probs
|
168 |
+
ip_hidden_states = torch.bmm(ip_attention_probs, ip_value)
|
169 |
+
ip_hidden_states = attn.batch_to_head_dim(ip_hidden_states)
|
170 |
+
|
171 |
+
hidden_states = hidden_states + self.scale * ip_hidden_states
|
172 |
+
|
173 |
+
# linear proj
|
174 |
+
hidden_states = attn.to_out[0](hidden_states)
|
175 |
+
# dropout
|
176 |
+
hidden_states = attn.to_out[1](hidden_states)
|
177 |
+
|
178 |
+
if input_ndim == 4:
|
179 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
180 |
+
|
181 |
+
if attn.residual_connection:
|
182 |
+
hidden_states = hidden_states + residual
|
183 |
+
|
184 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
185 |
+
|
186 |
+
return hidden_states
|
187 |
+
|
188 |
+
|
189 |
+
class AttnProcessor2_0(torch.nn.Module):
|
190 |
+
r"""
|
191 |
+
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
192 |
+
"""
|
193 |
+
|
194 |
+
def __init__(
|
195 |
+
self,
|
196 |
+
hidden_size=None,
|
197 |
+
cross_attention_dim=None,
|
198 |
+
):
|
199 |
+
super().__init__()
|
200 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
201 |
+
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
202 |
+
|
203 |
+
def __call__(
|
204 |
+
self,
|
205 |
+
attn,
|
206 |
+
hidden_states,
|
207 |
+
encoder_hidden_states=None,
|
208 |
+
attention_mask=None,
|
209 |
+
temb=None,
|
210 |
+
):
|
211 |
+
residual = hidden_states
|
212 |
+
|
213 |
+
if attn.spatial_norm is not None:
|
214 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
215 |
+
|
216 |
+
input_ndim = hidden_states.ndim
|
217 |
+
|
218 |
+
if input_ndim == 4:
|
219 |
+
batch_size, channel, height, width = hidden_states.shape
|
220 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
221 |
+
|
222 |
+
batch_size, sequence_length, _ = (
|
223 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
224 |
+
)
|
225 |
+
|
226 |
+
if attention_mask is not None:
|
227 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
228 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
229 |
+
# (batch, heads, source_length, target_length)
|
230 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
231 |
+
|
232 |
+
if attn.group_norm is not None:
|
233 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
234 |
+
|
235 |
+
query = attn.to_q(hidden_states)
|
236 |
+
|
237 |
+
if encoder_hidden_states is None:
|
238 |
+
encoder_hidden_states = hidden_states
|
239 |
+
elif attn.norm_cross:
|
240 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
241 |
+
|
242 |
+
key = attn.to_k(encoder_hidden_states)
|
243 |
+
value = attn.to_v(encoder_hidden_states)
|
244 |
+
|
245 |
+
inner_dim = key.shape[-1]
|
246 |
+
head_dim = inner_dim // attn.heads
|
247 |
+
|
248 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
249 |
+
|
250 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
251 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
252 |
+
|
253 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
254 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
255 |
+
hidden_states = F.scaled_dot_product_attention(
|
256 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
257 |
+
)
|
258 |
+
|
259 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
260 |
+
hidden_states = hidden_states.to(query.dtype)
|
261 |
+
|
262 |
+
# linear proj
|
263 |
+
hidden_states = attn.to_out[0](hidden_states)
|
264 |
+
# dropout
|
265 |
+
hidden_states = attn.to_out[1](hidden_states)
|
266 |
+
|
267 |
+
if input_ndim == 4:
|
268 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
269 |
+
|
270 |
+
if attn.residual_connection:
|
271 |
+
hidden_states = hidden_states + residual
|
272 |
+
|
273 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
274 |
+
|
275 |
+
return hidden_states
|
276 |
+
|
277 |
+
|
278 |
+
class IPAttnProcessor2_0(torch.nn.Module):
|
279 |
+
r"""
|
280 |
+
Attention processor for IP-Adapater for PyTorch 2.0.
|
281 |
+
Args:
|
282 |
+
hidden_size (`int`):
|
283 |
+
The hidden size of the attention layer.
|
284 |
+
cross_attention_dim (`int`):
|
285 |
+
The number of channels in the `encoder_hidden_states`.
|
286 |
+
scale (`float`, defaults to 1.0):
|
287 |
+
the weight scale of image prompt.
|
288 |
+
num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
|
289 |
+
The context length of the image features.
|
290 |
+
"""
|
291 |
+
|
292 |
+
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4, skip=False):
|
293 |
+
super().__init__()
|
294 |
+
|
295 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
296 |
+
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
297 |
+
|
298 |
+
self.hidden_size = hidden_size
|
299 |
+
self.cross_attention_dim = cross_attention_dim
|
300 |
+
self.scale = scale
|
301 |
+
self.num_tokens = num_tokens
|
302 |
+
self.skip = skip
|
303 |
+
|
304 |
+
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
305 |
+
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
306 |
+
|
307 |
+
def __call__(
|
308 |
+
self,
|
309 |
+
attn,
|
310 |
+
hidden_states,
|
311 |
+
encoder_hidden_states=None,
|
312 |
+
attention_mask=None,
|
313 |
+
temb=None,
|
314 |
+
):
|
315 |
+
residual = hidden_states
|
316 |
+
|
317 |
+
if attn.spatial_norm is not None:
|
318 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
319 |
+
|
320 |
+
input_ndim = hidden_states.ndim
|
321 |
+
|
322 |
+
if input_ndim == 4:
|
323 |
+
batch_size, channel, height, width = hidden_states.shape
|
324 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
325 |
+
|
326 |
+
batch_size, sequence_length, _ = (
|
327 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
328 |
+
)
|
329 |
+
|
330 |
+
if attention_mask is not None:
|
331 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
332 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
333 |
+
# (batch, heads, source_length, target_length)
|
334 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
335 |
+
|
336 |
+
if attn.group_norm is not None:
|
337 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
338 |
+
|
339 |
+
query = attn.to_q(hidden_states)
|
340 |
+
|
341 |
+
if encoder_hidden_states is None:
|
342 |
+
encoder_hidden_states = hidden_states
|
343 |
+
else:
|
344 |
+
# get encoder_hidden_states, ip_hidden_states
|
345 |
+
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
|
346 |
+
encoder_hidden_states, ip_hidden_states = (
|
347 |
+
encoder_hidden_states[:, :end_pos, :],
|
348 |
+
encoder_hidden_states[:, end_pos:, :],
|
349 |
+
)
|
350 |
+
if attn.norm_cross:
|
351 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
352 |
+
|
353 |
+
key = attn.to_k(encoder_hidden_states)
|
354 |
+
value = attn.to_v(encoder_hidden_states)
|
355 |
+
|
356 |
+
inner_dim = key.shape[-1]
|
357 |
+
head_dim = inner_dim // attn.heads
|
358 |
+
|
359 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
360 |
+
|
361 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
362 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
363 |
+
|
364 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
365 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
366 |
+
hidden_states = F.scaled_dot_product_attention(
|
367 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
368 |
+
)
|
369 |
+
|
370 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
371 |
+
hidden_states = hidden_states.to(query.dtype)
|
372 |
+
|
373 |
+
if not self.skip:
|
374 |
+
# for ip-adapter
|
375 |
+
ip_key = self.to_k_ip(ip_hidden_states)
|
376 |
+
ip_value = self.to_v_ip(ip_hidden_states)
|
377 |
+
|
378 |
+
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
379 |
+
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
380 |
+
|
381 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
382 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
383 |
+
ip_hidden_states = F.scaled_dot_product_attention(
|
384 |
+
query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
|
385 |
+
)
|
386 |
+
with torch.no_grad():
|
387 |
+
self.attn_map = query @ ip_key.transpose(-2, -1).softmax(dim=-1)
|
388 |
+
#print(self.attn_map.shape)
|
389 |
+
|
390 |
+
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
391 |
+
ip_hidden_states = ip_hidden_states.to(query.dtype)
|
392 |
+
|
393 |
+
hidden_states = hidden_states + self.scale * ip_hidden_states
|
394 |
+
|
395 |
+
# linear proj
|
396 |
+
hidden_states = attn.to_out[0](hidden_states)
|
397 |
+
# dropout
|
398 |
+
hidden_states = attn.to_out[1](hidden_states)
|
399 |
+
|
400 |
+
if input_ndim == 4:
|
401 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
402 |
+
|
403 |
+
if attn.residual_connection:
|
404 |
+
hidden_states = hidden_states + residual
|
405 |
+
|
406 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
407 |
+
|
408 |
+
return hidden_states
|
409 |
+
|
410 |
+
|
411 |
+
## for controlnet
|
412 |
+
class CNAttnProcessor:
|
413 |
+
r"""
|
414 |
+
Default processor for performing attention-related computations.
|
415 |
+
"""
|
416 |
+
|
417 |
+
def __init__(self, num_tokens=4):
|
418 |
+
self.num_tokens = num_tokens
|
419 |
+
|
420 |
+
def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, temb=None):
|
421 |
+
residual = hidden_states
|
422 |
+
|
423 |
+
if attn.spatial_norm is not None:
|
424 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
425 |
+
|
426 |
+
input_ndim = hidden_states.ndim
|
427 |
+
|
428 |
+
if input_ndim == 4:
|
429 |
+
batch_size, channel, height, width = hidden_states.shape
|
430 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
431 |
+
|
432 |
+
batch_size, sequence_length, _ = (
|
433 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
434 |
+
)
|
435 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
436 |
+
|
437 |
+
if attn.group_norm is not None:
|
438 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
439 |
+
|
440 |
+
query = attn.to_q(hidden_states)
|
441 |
+
|
442 |
+
if encoder_hidden_states is None:
|
443 |
+
encoder_hidden_states = hidden_states
|
444 |
+
else:
|
445 |
+
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
|
446 |
+
encoder_hidden_states = encoder_hidden_states[:, :end_pos] # only use text
|
447 |
+
if attn.norm_cross:
|
448 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
449 |
+
|
450 |
+
key = attn.to_k(encoder_hidden_states)
|
451 |
+
value = attn.to_v(encoder_hidden_states)
|
452 |
+
|
453 |
+
query = attn.head_to_batch_dim(query)
|
454 |
+
key = attn.head_to_batch_dim(key)
|
455 |
+
value = attn.head_to_batch_dim(value)
|
456 |
+
|
457 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
458 |
+
hidden_states = torch.bmm(attention_probs, value)
|
459 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
460 |
+
|
461 |
+
# linear proj
|
462 |
+
hidden_states = attn.to_out[0](hidden_states)
|
463 |
+
# dropout
|
464 |
+
hidden_states = attn.to_out[1](hidden_states)
|
465 |
+
|
466 |
+
if input_ndim == 4:
|
467 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
468 |
+
|
469 |
+
if attn.residual_connection:
|
470 |
+
hidden_states = hidden_states + residual
|
471 |
+
|
472 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
473 |
+
|
474 |
+
return hidden_states
|
475 |
+
|
476 |
+
|
477 |
+
class CNAttnProcessor2_0:
|
478 |
+
r"""
|
479 |
+
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
480 |
+
"""
|
481 |
+
|
482 |
+
def __init__(self, num_tokens=4):
|
483 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
484 |
+
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
485 |
+
self.num_tokens = num_tokens
|
486 |
+
|
487 |
+
def __call__(
|
488 |
+
self,
|
489 |
+
attn,
|
490 |
+
hidden_states,
|
491 |
+
encoder_hidden_states=None,
|
492 |
+
attention_mask=None,
|
493 |
+
temb=None,
|
494 |
+
):
|
495 |
+
residual = hidden_states
|
496 |
+
|
497 |
+
if attn.spatial_norm is not None:
|
498 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
499 |
+
|
500 |
+
input_ndim = hidden_states.ndim
|
501 |
+
|
502 |
+
if input_ndim == 4:
|
503 |
+
batch_size, channel, height, width = hidden_states.shape
|
504 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
505 |
+
|
506 |
+
batch_size, sequence_length, _ = (
|
507 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
508 |
+
)
|
509 |
+
|
510 |
+
if attention_mask is not None:
|
511 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
512 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
513 |
+
# (batch, heads, source_length, target_length)
|
514 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
515 |
+
|
516 |
+
if attn.group_norm is not None:
|
517 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
518 |
+
|
519 |
+
query = attn.to_q(hidden_states)
|
520 |
+
|
521 |
+
if encoder_hidden_states is None:
|
522 |
+
encoder_hidden_states = hidden_states
|
523 |
+
else:
|
524 |
+
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
|
525 |
+
encoder_hidden_states = encoder_hidden_states[:, :end_pos] # only use text
|
526 |
+
if attn.norm_cross:
|
527 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
528 |
+
|
529 |
+
key = attn.to_k(encoder_hidden_states)
|
530 |
+
value = attn.to_v(encoder_hidden_states)
|
531 |
+
|
532 |
+
inner_dim = key.shape[-1]
|
533 |
+
head_dim = inner_dim // attn.heads
|
534 |
+
|
535 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
536 |
+
|
537 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
538 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
539 |
+
|
540 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
541 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
542 |
+
hidden_states = F.scaled_dot_product_attention(
|
543 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
544 |
+
)
|
545 |
+
|
546 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
547 |
+
hidden_states = hidden_states.to(query.dtype)
|
548 |
+
|
549 |
+
# linear proj
|
550 |
+
hidden_states = attn.to_out[0](hidden_states)
|
551 |
+
# dropout
|
552 |
+
hidden_states = attn.to_out[1](hidden_states)
|
553 |
+
|
554 |
+
if input_ndim == 4:
|
555 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
556 |
+
|
557 |
+
if attn.residual_connection:
|
558 |
+
hidden_states = hidden_states + residual
|
559 |
+
|
560 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
561 |
+
|
562 |
+
return hidden_states
|
black_box_image_edit/ip_adapter/ip_adapter.py
ADDED
@@ -0,0 +1,460 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import List
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from diffusers import StableDiffusionPipeline
|
6 |
+
from diffusers.pipelines.controlnet import MultiControlNetModel
|
7 |
+
from PIL import Image
|
8 |
+
from safetensors import safe_open
|
9 |
+
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
|
10 |
+
|
11 |
+
from .utils import is_torch2_available, get_generator
|
12 |
+
|
13 |
+
if is_torch2_available():
|
14 |
+
from .attention_processor import (
|
15 |
+
AttnProcessor2_0 as AttnProcessor,
|
16 |
+
)
|
17 |
+
from .attention_processor import (
|
18 |
+
CNAttnProcessor2_0 as CNAttnProcessor,
|
19 |
+
)
|
20 |
+
from .attention_processor import (
|
21 |
+
IPAttnProcessor2_0 as IPAttnProcessor,
|
22 |
+
)
|
23 |
+
else:
|
24 |
+
from .attention_processor import AttnProcessor, CNAttnProcessor, IPAttnProcessor
|
25 |
+
from .resampler import Resampler
|
26 |
+
|
27 |
+
|
28 |
+
class ImageProjModel(torch.nn.Module):
|
29 |
+
"""Projection Model"""
|
30 |
+
|
31 |
+
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4):
|
32 |
+
super().__init__()
|
33 |
+
|
34 |
+
self.generator = None
|
35 |
+
self.cross_attention_dim = cross_attention_dim
|
36 |
+
self.clip_extra_context_tokens = clip_extra_context_tokens
|
37 |
+
self.proj = torch.nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim)
|
38 |
+
self.norm = torch.nn.LayerNorm(cross_attention_dim)
|
39 |
+
|
40 |
+
def forward(self, image_embeds):
|
41 |
+
embeds = image_embeds
|
42 |
+
clip_extra_context_tokens = self.proj(embeds).reshape(
|
43 |
+
-1, self.clip_extra_context_tokens, self.cross_attention_dim
|
44 |
+
)
|
45 |
+
clip_extra_context_tokens = self.norm(clip_extra_context_tokens)
|
46 |
+
return clip_extra_context_tokens
|
47 |
+
|
48 |
+
|
49 |
+
class MLPProjModel(torch.nn.Module):
|
50 |
+
"""SD model with image prompt"""
|
51 |
+
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024):
|
52 |
+
super().__init__()
|
53 |
+
|
54 |
+
self.proj = torch.nn.Sequential(
|
55 |
+
torch.nn.Linear(clip_embeddings_dim, clip_embeddings_dim),
|
56 |
+
torch.nn.GELU(),
|
57 |
+
torch.nn.Linear(clip_embeddings_dim, cross_attention_dim),
|
58 |
+
torch.nn.LayerNorm(cross_attention_dim)
|
59 |
+
)
|
60 |
+
|
61 |
+
def forward(self, image_embeds):
|
62 |
+
clip_extra_context_tokens = self.proj(image_embeds)
|
63 |
+
return clip_extra_context_tokens
|
64 |
+
|
65 |
+
|
66 |
+
class IPAdapter:
|
67 |
+
def __init__(self, sd_pipe, image_encoder_path, ip_ckpt, device, num_tokens=4, target_blocks=["block"]):
|
68 |
+
self.device = device
|
69 |
+
self.image_encoder_path = image_encoder_path
|
70 |
+
self.ip_ckpt = ip_ckpt
|
71 |
+
self.num_tokens = num_tokens
|
72 |
+
self.target_blocks = target_blocks
|
73 |
+
|
74 |
+
self.pipe = sd_pipe.to(self.device)
|
75 |
+
self.set_ip_adapter()
|
76 |
+
|
77 |
+
# load image encoder
|
78 |
+
self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(self.image_encoder_path).to(
|
79 |
+
self.device, dtype=torch.float16
|
80 |
+
)
|
81 |
+
self.clip_image_processor = CLIPImageProcessor()
|
82 |
+
# image proj model
|
83 |
+
self.image_proj_model = self.init_proj()
|
84 |
+
|
85 |
+
self.load_ip_adapter()
|
86 |
+
|
87 |
+
def init_proj(self):
|
88 |
+
image_proj_model = ImageProjModel(
|
89 |
+
cross_attention_dim=self.pipe.unet.config.cross_attention_dim,
|
90 |
+
clip_embeddings_dim=self.image_encoder.config.projection_dim,
|
91 |
+
clip_extra_context_tokens=self.num_tokens,
|
92 |
+
).to(self.device, dtype=torch.float16)
|
93 |
+
return image_proj_model
|
94 |
+
|
95 |
+
def set_ip_adapter(self):
|
96 |
+
unet = self.pipe.unet
|
97 |
+
attn_procs = {}
|
98 |
+
for name in unet.attn_processors.keys():
|
99 |
+
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
|
100 |
+
if name.startswith("mid_block"):
|
101 |
+
hidden_size = unet.config.block_out_channels[-1]
|
102 |
+
elif name.startswith("up_blocks"):
|
103 |
+
block_id = int(name[len("up_blocks.")])
|
104 |
+
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
|
105 |
+
elif name.startswith("down_blocks"):
|
106 |
+
block_id = int(name[len("down_blocks.")])
|
107 |
+
hidden_size = unet.config.block_out_channels[block_id]
|
108 |
+
if cross_attention_dim is None:
|
109 |
+
attn_procs[name] = AttnProcessor()
|
110 |
+
else:
|
111 |
+
selected = False
|
112 |
+
for block_name in self.target_blocks:
|
113 |
+
if block_name in name:
|
114 |
+
selected = True
|
115 |
+
break
|
116 |
+
if selected:
|
117 |
+
attn_procs[name] = IPAttnProcessor(
|
118 |
+
hidden_size=hidden_size,
|
119 |
+
cross_attention_dim=cross_attention_dim,
|
120 |
+
scale=1.0,
|
121 |
+
num_tokens=self.num_tokens,
|
122 |
+
).to(self.device, dtype=torch.float16)
|
123 |
+
else:
|
124 |
+
attn_procs[name] = IPAttnProcessor(
|
125 |
+
hidden_size=hidden_size,
|
126 |
+
cross_attention_dim=cross_attention_dim,
|
127 |
+
scale=1.0,
|
128 |
+
num_tokens=self.num_tokens,
|
129 |
+
skip=True
|
130 |
+
).to(self.device, dtype=torch.float16)
|
131 |
+
unet.set_attn_processor(attn_procs)
|
132 |
+
if hasattr(self.pipe, "controlnet"):
|
133 |
+
if isinstance(self.pipe.controlnet, MultiControlNetModel):
|
134 |
+
for controlnet in self.pipe.controlnet.nets:
|
135 |
+
controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens))
|
136 |
+
else:
|
137 |
+
self.pipe.controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens))
|
138 |
+
|
139 |
+
def load_ip_adapter(self):
|
140 |
+
if os.path.splitext(self.ip_ckpt)[-1] == ".safetensors":
|
141 |
+
state_dict = {"image_proj": {}, "ip_adapter": {}}
|
142 |
+
with safe_open(self.ip_ckpt, framework="pt", device="cpu") as f:
|
143 |
+
for key in f.keys():
|
144 |
+
if key.startswith("image_proj."):
|
145 |
+
state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key)
|
146 |
+
elif key.startswith("ip_adapter."):
|
147 |
+
state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key)
|
148 |
+
else:
|
149 |
+
state_dict = torch.load(self.ip_ckpt, map_location="cpu")
|
150 |
+
self.image_proj_model.load_state_dict(state_dict["image_proj"])
|
151 |
+
ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values())
|
152 |
+
ip_layers.load_state_dict(state_dict["ip_adapter"], strict=False)
|
153 |
+
|
154 |
+
@torch.inference_mode()
|
155 |
+
def get_image_embeds(self, pil_image=None, clip_image_embeds=None, content_prompt_embeds=None):
|
156 |
+
if pil_image is not None:
|
157 |
+
if isinstance(pil_image, Image.Image):
|
158 |
+
pil_image = [pil_image]
|
159 |
+
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
|
160 |
+
clip_image_embeds = self.image_encoder(clip_image.to(self.device, dtype=torch.float16)).image_embeds
|
161 |
+
else:
|
162 |
+
clip_image_embeds = clip_image_embeds.to(self.device, dtype=torch.float16)
|
163 |
+
|
164 |
+
if content_prompt_embeds is not None:
|
165 |
+
clip_image_embeds = clip_image_embeds - content_prompt_embeds
|
166 |
+
|
167 |
+
image_prompt_embeds = self.image_proj_model(clip_image_embeds)
|
168 |
+
uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(clip_image_embeds))
|
169 |
+
return image_prompt_embeds, uncond_image_prompt_embeds
|
170 |
+
|
171 |
+
def set_scale(self, scale):
|
172 |
+
for attn_processor in self.pipe.unet.attn_processors.values():
|
173 |
+
if isinstance(attn_processor, IPAttnProcessor):
|
174 |
+
attn_processor.scale = scale
|
175 |
+
|
176 |
+
def generate(
|
177 |
+
self,
|
178 |
+
pil_image=None,
|
179 |
+
clip_image_embeds=None,
|
180 |
+
prompt=None,
|
181 |
+
negative_prompt=None,
|
182 |
+
scale=1.0,
|
183 |
+
num_samples=4,
|
184 |
+
seed=None,
|
185 |
+
guidance_scale=7.5,
|
186 |
+
num_inference_steps=30,
|
187 |
+
neg_content_emb=None,
|
188 |
+
**kwargs,
|
189 |
+
):
|
190 |
+
self.set_scale(scale)
|
191 |
+
|
192 |
+
if pil_image is not None:
|
193 |
+
num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image)
|
194 |
+
else:
|
195 |
+
num_prompts = clip_image_embeds.size(0)
|
196 |
+
|
197 |
+
if prompt is None:
|
198 |
+
prompt = "best quality, high quality"
|
199 |
+
if negative_prompt is None:
|
200 |
+
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
201 |
+
|
202 |
+
if not isinstance(prompt, List):
|
203 |
+
prompt = [prompt] * num_prompts
|
204 |
+
if not isinstance(negative_prompt, List):
|
205 |
+
negative_prompt = [negative_prompt] * num_prompts
|
206 |
+
|
207 |
+
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(
|
208 |
+
pil_image=pil_image, clip_image_embeds=clip_image_embeds, content_prompt_embeds=neg_content_emb
|
209 |
+
)
|
210 |
+
bs_embed, seq_len, _ = image_prompt_embeds.shape
|
211 |
+
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
|
212 |
+
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
213 |
+
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
|
214 |
+
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
215 |
+
|
216 |
+
with torch.inference_mode():
|
217 |
+
prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt(
|
218 |
+
prompt,
|
219 |
+
device=self.device,
|
220 |
+
num_images_per_prompt=num_samples,
|
221 |
+
do_classifier_free_guidance=True,
|
222 |
+
negative_prompt=negative_prompt,
|
223 |
+
)
|
224 |
+
prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1)
|
225 |
+
negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1)
|
226 |
+
|
227 |
+
generator = get_generator(seed, self.device)
|
228 |
+
|
229 |
+
images = self.pipe(
|
230 |
+
prompt_embeds=prompt_embeds,
|
231 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
232 |
+
guidance_scale=guidance_scale,
|
233 |
+
num_inference_steps=num_inference_steps,
|
234 |
+
generator=generator,
|
235 |
+
**kwargs,
|
236 |
+
).images
|
237 |
+
|
238 |
+
return images
|
239 |
+
|
240 |
+
|
241 |
+
class IPAdapterXL(IPAdapter):
|
242 |
+
"""SDXL"""
|
243 |
+
|
244 |
+
def generate(
|
245 |
+
self,
|
246 |
+
pil_image,
|
247 |
+
prompt=None,
|
248 |
+
negative_prompt=None,
|
249 |
+
scale=1.0,
|
250 |
+
num_samples=4,
|
251 |
+
seed=None,
|
252 |
+
num_inference_steps=30,
|
253 |
+
neg_content_emb=None,
|
254 |
+
neg_content_prompt=None,
|
255 |
+
neg_content_scale=1.0,
|
256 |
+
**kwargs,
|
257 |
+
):
|
258 |
+
self.set_scale(scale)
|
259 |
+
|
260 |
+
num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image)
|
261 |
+
|
262 |
+
if prompt is None:
|
263 |
+
prompt = "best quality, high quality"
|
264 |
+
if negative_prompt is None:
|
265 |
+
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
266 |
+
|
267 |
+
if not isinstance(prompt, List):
|
268 |
+
prompt = [prompt] * num_prompts
|
269 |
+
if not isinstance(negative_prompt, List):
|
270 |
+
negative_prompt = [negative_prompt] * num_prompts
|
271 |
+
|
272 |
+
if neg_content_emb is None:
|
273 |
+
if neg_content_prompt is not None:
|
274 |
+
with torch.inference_mode():
|
275 |
+
(
|
276 |
+
prompt_embeds_, # torch.Size([1, 77, 2048])
|
277 |
+
negative_prompt_embeds_,
|
278 |
+
pooled_prompt_embeds_, # torch.Size([1, 1280])
|
279 |
+
negative_pooled_prompt_embeds_,
|
280 |
+
) = self.pipe.encode_prompt(
|
281 |
+
neg_content_prompt,
|
282 |
+
num_images_per_prompt=num_samples,
|
283 |
+
do_classifier_free_guidance=True,
|
284 |
+
negative_prompt=negative_prompt,
|
285 |
+
)
|
286 |
+
pooled_prompt_embeds_ *= neg_content_scale
|
287 |
+
else:
|
288 |
+
pooled_prompt_embeds_ = neg_content_emb
|
289 |
+
else:
|
290 |
+
pooled_prompt_embeds_ = None
|
291 |
+
|
292 |
+
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(pil_image, content_prompt_embeds=pooled_prompt_embeds_)
|
293 |
+
bs_embed, seq_len, _ = image_prompt_embeds.shape
|
294 |
+
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
|
295 |
+
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
296 |
+
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
|
297 |
+
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
298 |
+
|
299 |
+
with torch.inference_mode():
|
300 |
+
(
|
301 |
+
prompt_embeds,
|
302 |
+
negative_prompt_embeds,
|
303 |
+
pooled_prompt_embeds,
|
304 |
+
negative_pooled_prompt_embeds,
|
305 |
+
) = self.pipe.encode_prompt(
|
306 |
+
prompt,
|
307 |
+
num_images_per_prompt=num_samples,
|
308 |
+
do_classifier_free_guidance=True,
|
309 |
+
negative_prompt=negative_prompt,
|
310 |
+
)
|
311 |
+
prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1)
|
312 |
+
negative_prompt_embeds = torch.cat([negative_prompt_embeds, uncond_image_prompt_embeds], dim=1)
|
313 |
+
|
314 |
+
self.generator = get_generator(seed, self.device)
|
315 |
+
|
316 |
+
images = self.pipe(
|
317 |
+
prompt_embeds=prompt_embeds,
|
318 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
319 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
320 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
321 |
+
num_inference_steps=num_inference_steps,
|
322 |
+
generator=self.generator,
|
323 |
+
**kwargs,
|
324 |
+
).images
|
325 |
+
|
326 |
+
return images
|
327 |
+
|
328 |
+
|
329 |
+
class IPAdapterPlus(IPAdapter):
|
330 |
+
"""IP-Adapter with fine-grained features"""
|
331 |
+
|
332 |
+
def init_proj(self):
|
333 |
+
image_proj_model = Resampler(
|
334 |
+
dim=self.pipe.unet.config.cross_attention_dim,
|
335 |
+
depth=4,
|
336 |
+
dim_head=64,
|
337 |
+
heads=12,
|
338 |
+
num_queries=self.num_tokens,
|
339 |
+
embedding_dim=self.image_encoder.config.hidden_size,
|
340 |
+
output_dim=self.pipe.unet.config.cross_attention_dim,
|
341 |
+
ff_mult=4,
|
342 |
+
).to(self.device, dtype=torch.float16)
|
343 |
+
return image_proj_model
|
344 |
+
|
345 |
+
@torch.inference_mode()
|
346 |
+
def get_image_embeds(self, pil_image=None, clip_image_embeds=None):
|
347 |
+
if isinstance(pil_image, Image.Image):
|
348 |
+
pil_image = [pil_image]
|
349 |
+
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
|
350 |
+
clip_image = clip_image.to(self.device, dtype=torch.float16)
|
351 |
+
clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
|
352 |
+
image_prompt_embeds = self.image_proj_model(clip_image_embeds)
|
353 |
+
uncond_clip_image_embeds = self.image_encoder(
|
354 |
+
torch.zeros_like(clip_image), output_hidden_states=True
|
355 |
+
).hidden_states[-2]
|
356 |
+
uncond_image_prompt_embeds = self.image_proj_model(uncond_clip_image_embeds)
|
357 |
+
return image_prompt_embeds, uncond_image_prompt_embeds
|
358 |
+
|
359 |
+
|
360 |
+
class IPAdapterFull(IPAdapterPlus):
|
361 |
+
"""IP-Adapter with full features"""
|
362 |
+
|
363 |
+
def init_proj(self):
|
364 |
+
image_proj_model = MLPProjModel(
|
365 |
+
cross_attention_dim=self.pipe.unet.config.cross_attention_dim,
|
366 |
+
clip_embeddings_dim=self.image_encoder.config.hidden_size,
|
367 |
+
).to(self.device, dtype=torch.float16)
|
368 |
+
return image_proj_model
|
369 |
+
|
370 |
+
|
371 |
+
class IPAdapterPlusXL(IPAdapter):
|
372 |
+
"""SDXL"""
|
373 |
+
|
374 |
+
def init_proj(self):
|
375 |
+
image_proj_model = Resampler(
|
376 |
+
dim=1280,
|
377 |
+
depth=4,
|
378 |
+
dim_head=64,
|
379 |
+
heads=20,
|
380 |
+
num_queries=self.num_tokens,
|
381 |
+
embedding_dim=self.image_encoder.config.hidden_size,
|
382 |
+
output_dim=self.pipe.unet.config.cross_attention_dim,
|
383 |
+
ff_mult=4,
|
384 |
+
).to(self.device, dtype=torch.float16)
|
385 |
+
return image_proj_model
|
386 |
+
|
387 |
+
@torch.inference_mode()
|
388 |
+
def get_image_embeds(self, pil_image):
|
389 |
+
if isinstance(pil_image, Image.Image):
|
390 |
+
pil_image = [pil_image]
|
391 |
+
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
|
392 |
+
clip_image = clip_image.to(self.device, dtype=torch.float16)
|
393 |
+
clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
|
394 |
+
image_prompt_embeds = self.image_proj_model(clip_image_embeds)
|
395 |
+
uncond_clip_image_embeds = self.image_encoder(
|
396 |
+
torch.zeros_like(clip_image), output_hidden_states=True
|
397 |
+
).hidden_states[-2]
|
398 |
+
uncond_image_prompt_embeds = self.image_proj_model(uncond_clip_image_embeds)
|
399 |
+
return image_prompt_embeds, uncond_image_prompt_embeds
|
400 |
+
|
401 |
+
def generate(
|
402 |
+
self,
|
403 |
+
pil_image,
|
404 |
+
prompt=None,
|
405 |
+
negative_prompt=None,
|
406 |
+
scale=1.0,
|
407 |
+
num_samples=4,
|
408 |
+
seed=None,
|
409 |
+
num_inference_steps=30,
|
410 |
+
**kwargs,
|
411 |
+
):
|
412 |
+
self.set_scale(scale)
|
413 |
+
|
414 |
+
num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image)
|
415 |
+
|
416 |
+
if prompt is None:
|
417 |
+
prompt = "best quality, high quality"
|
418 |
+
if negative_prompt is None:
|
419 |
+
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
420 |
+
|
421 |
+
if not isinstance(prompt, List):
|
422 |
+
prompt = [prompt] * num_prompts
|
423 |
+
if not isinstance(negative_prompt, List):
|
424 |
+
negative_prompt = [negative_prompt] * num_prompts
|
425 |
+
|
426 |
+
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(pil_image)
|
427 |
+
bs_embed, seq_len, _ = image_prompt_embeds.shape
|
428 |
+
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
|
429 |
+
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
430 |
+
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
|
431 |
+
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
432 |
+
|
433 |
+
with torch.inference_mode():
|
434 |
+
(
|
435 |
+
prompt_embeds,
|
436 |
+
negative_prompt_embeds,
|
437 |
+
pooled_prompt_embeds,
|
438 |
+
negative_pooled_prompt_embeds,
|
439 |
+
) = self.pipe.encode_prompt(
|
440 |
+
prompt,
|
441 |
+
num_images_per_prompt=num_samples,
|
442 |
+
do_classifier_free_guidance=True,
|
443 |
+
negative_prompt=negative_prompt,
|
444 |
+
)
|
445 |
+
prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1)
|
446 |
+
negative_prompt_embeds = torch.cat([negative_prompt_embeds, uncond_image_prompt_embeds], dim=1)
|
447 |
+
|
448 |
+
generator = get_generator(seed, self.device)
|
449 |
+
|
450 |
+
images = self.pipe(
|
451 |
+
prompt_embeds=prompt_embeds,
|
452 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
453 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
454 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
455 |
+
num_inference_steps=num_inference_steps,
|
456 |
+
generator=generator,
|
457 |
+
**kwargs,
|
458 |
+
).images
|
459 |
+
|
460 |
+
return images
|
black_box_image_edit/ip_adapter/resampler.py
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# modified from https://github.com/mlfoundations/open_flamingo/blob/main/open_flamingo/src/helpers.py
|
2 |
+
# and https://github.com/lucidrains/imagen-pytorch/blob/main/imagen_pytorch/imagen_pytorch.py
|
3 |
+
|
4 |
+
import math
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
from einops import rearrange
|
9 |
+
from einops.layers.torch import Rearrange
|
10 |
+
|
11 |
+
|
12 |
+
# FFN
|
13 |
+
def FeedForward(dim, mult=4):
|
14 |
+
inner_dim = int(dim * mult)
|
15 |
+
return nn.Sequential(
|
16 |
+
nn.LayerNorm(dim),
|
17 |
+
nn.Linear(dim, inner_dim, bias=False),
|
18 |
+
nn.GELU(),
|
19 |
+
nn.Linear(inner_dim, dim, bias=False),
|
20 |
+
)
|
21 |
+
|
22 |
+
|
23 |
+
def reshape_tensor(x, heads):
|
24 |
+
bs, length, width = x.shape
|
25 |
+
# (bs, length, width) --> (bs, length, n_heads, dim_per_head)
|
26 |
+
x = x.view(bs, length, heads, -1)
|
27 |
+
# (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
|
28 |
+
x = x.transpose(1, 2)
|
29 |
+
# (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
|
30 |
+
x = x.reshape(bs, heads, length, -1)
|
31 |
+
return x
|
32 |
+
|
33 |
+
|
34 |
+
class PerceiverAttention(nn.Module):
|
35 |
+
def __init__(self, *, dim, dim_head=64, heads=8):
|
36 |
+
super().__init__()
|
37 |
+
self.scale = dim_head**-0.5
|
38 |
+
self.dim_head = dim_head
|
39 |
+
self.heads = heads
|
40 |
+
inner_dim = dim_head * heads
|
41 |
+
|
42 |
+
self.norm1 = nn.LayerNorm(dim)
|
43 |
+
self.norm2 = nn.LayerNorm(dim)
|
44 |
+
|
45 |
+
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
46 |
+
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
|
47 |
+
self.to_out = nn.Linear(inner_dim, dim, bias=False)
|
48 |
+
|
49 |
+
def forward(self, x, latents):
|
50 |
+
"""
|
51 |
+
Args:
|
52 |
+
x (torch.Tensor): image features
|
53 |
+
shape (b, n1, D)
|
54 |
+
latent (torch.Tensor): latent features
|
55 |
+
shape (b, n2, D)
|
56 |
+
"""
|
57 |
+
x = self.norm1(x)
|
58 |
+
latents = self.norm2(latents)
|
59 |
+
|
60 |
+
b, l, _ = latents.shape
|
61 |
+
|
62 |
+
q = self.to_q(latents)
|
63 |
+
kv_input = torch.cat((x, latents), dim=-2)
|
64 |
+
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
|
65 |
+
|
66 |
+
q = reshape_tensor(q, self.heads)
|
67 |
+
k = reshape_tensor(k, self.heads)
|
68 |
+
v = reshape_tensor(v, self.heads)
|
69 |
+
|
70 |
+
# attention
|
71 |
+
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
|
72 |
+
weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
|
73 |
+
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
|
74 |
+
out = weight @ v
|
75 |
+
|
76 |
+
out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
|
77 |
+
|
78 |
+
return self.to_out(out)
|
79 |
+
|
80 |
+
|
81 |
+
class Resampler(nn.Module):
|
82 |
+
def __init__(
|
83 |
+
self,
|
84 |
+
dim=1024,
|
85 |
+
depth=8,
|
86 |
+
dim_head=64,
|
87 |
+
heads=16,
|
88 |
+
num_queries=8,
|
89 |
+
embedding_dim=768,
|
90 |
+
output_dim=1024,
|
91 |
+
ff_mult=4,
|
92 |
+
max_seq_len: int = 257, # CLIP tokens + CLS token
|
93 |
+
apply_pos_emb: bool = False,
|
94 |
+
num_latents_mean_pooled: int = 0, # number of latents derived from mean pooled representation of the sequence
|
95 |
+
):
|
96 |
+
super().__init__()
|
97 |
+
self.pos_emb = nn.Embedding(max_seq_len, embedding_dim) if apply_pos_emb else None
|
98 |
+
|
99 |
+
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)
|
100 |
+
|
101 |
+
self.proj_in = nn.Linear(embedding_dim, dim)
|
102 |
+
|
103 |
+
self.proj_out = nn.Linear(dim, output_dim)
|
104 |
+
self.norm_out = nn.LayerNorm(output_dim)
|
105 |
+
|
106 |
+
self.to_latents_from_mean_pooled_seq = (
|
107 |
+
nn.Sequential(
|
108 |
+
nn.LayerNorm(dim),
|
109 |
+
nn.Linear(dim, dim * num_latents_mean_pooled),
|
110 |
+
Rearrange("b (n d) -> b n d", n=num_latents_mean_pooled),
|
111 |
+
)
|
112 |
+
if num_latents_mean_pooled > 0
|
113 |
+
else None
|
114 |
+
)
|
115 |
+
|
116 |
+
self.layers = nn.ModuleList([])
|
117 |
+
for _ in range(depth):
|
118 |
+
self.layers.append(
|
119 |
+
nn.ModuleList(
|
120 |
+
[
|
121 |
+
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
|
122 |
+
FeedForward(dim=dim, mult=ff_mult),
|
123 |
+
]
|
124 |
+
)
|
125 |
+
)
|
126 |
+
|
127 |
+
def forward(self, x):
|
128 |
+
if self.pos_emb is not None:
|
129 |
+
n, device = x.shape[1], x.device
|
130 |
+
pos_emb = self.pos_emb(torch.arange(n, device=device))
|
131 |
+
x = x + pos_emb
|
132 |
+
|
133 |
+
latents = self.latents.repeat(x.size(0), 1, 1)
|
134 |
+
|
135 |
+
x = self.proj_in(x)
|
136 |
+
|
137 |
+
if self.to_latents_from_mean_pooled_seq:
|
138 |
+
meanpooled_seq = masked_mean(x, dim=1, mask=torch.ones(x.shape[:2], device=x.device, dtype=torch.bool))
|
139 |
+
meanpooled_latents = self.to_latents_from_mean_pooled_seq(meanpooled_seq)
|
140 |
+
latents = torch.cat((meanpooled_latents, latents), dim=-2)
|
141 |
+
|
142 |
+
for attn, ff in self.layers:
|
143 |
+
latents = attn(x, latents) + latents
|
144 |
+
latents = ff(latents) + latents
|
145 |
+
|
146 |
+
latents = self.proj_out(latents)
|
147 |
+
return self.norm_out(latents)
|
148 |
+
|
149 |
+
|
150 |
+
def masked_mean(t, *, dim, mask=None):
|
151 |
+
if mask is None:
|
152 |
+
return t.mean(dim=dim)
|
153 |
+
|
154 |
+
denom = mask.sum(dim=dim, keepdim=True)
|
155 |
+
mask = rearrange(mask, "b n -> b n 1")
|
156 |
+
masked_t = t.masked_fill(~mask, 0.0)
|
157 |
+
|
158 |
+
return masked_t.sum(dim=dim) / denom.clamp(min=1e-5)
|
black_box_image_edit/ip_adapter/utils.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
attn_maps = {}
|
7 |
+
def hook_fn(name):
|
8 |
+
def forward_hook(module, input, output):
|
9 |
+
if hasattr(module.processor, "attn_map"):
|
10 |
+
attn_maps[name] = module.processor.attn_map
|
11 |
+
del module.processor.attn_map
|
12 |
+
|
13 |
+
return forward_hook
|
14 |
+
|
15 |
+
def register_cross_attention_hook(unet):
|
16 |
+
for name, module in unet.named_modules():
|
17 |
+
if name.split('.')[-1].startswith('attn2'):
|
18 |
+
module.register_forward_hook(hook_fn(name))
|
19 |
+
|
20 |
+
return unet
|
21 |
+
|
22 |
+
def upscale(attn_map, target_size):
|
23 |
+
attn_map = torch.mean(attn_map, dim=0)
|
24 |
+
attn_map = attn_map.permute(1,0)
|
25 |
+
temp_size = None
|
26 |
+
|
27 |
+
for i in range(0,5):
|
28 |
+
scale = 2 ** i
|
29 |
+
if ( target_size[0] // scale ) * ( target_size[1] // scale) == attn_map.shape[1]*64:
|
30 |
+
temp_size = (target_size[0]//(scale*8), target_size[1]//(scale*8))
|
31 |
+
break
|
32 |
+
|
33 |
+
assert temp_size is not None, "temp_size cannot is None"
|
34 |
+
|
35 |
+
attn_map = attn_map.view(attn_map.shape[0], *temp_size)
|
36 |
+
|
37 |
+
attn_map = F.interpolate(
|
38 |
+
attn_map.unsqueeze(0).to(dtype=torch.float32),
|
39 |
+
size=target_size,
|
40 |
+
mode='bilinear',
|
41 |
+
align_corners=False
|
42 |
+
)[0]
|
43 |
+
|
44 |
+
attn_map = torch.softmax(attn_map, dim=0)
|
45 |
+
return attn_map
|
46 |
+
def get_net_attn_map(image_size, batch_size=2, instance_or_negative=False, detach=True):
|
47 |
+
|
48 |
+
idx = 0 if instance_or_negative else 1
|
49 |
+
net_attn_maps = []
|
50 |
+
|
51 |
+
for name, attn_map in attn_maps.items():
|
52 |
+
attn_map = attn_map.cpu() if detach else attn_map
|
53 |
+
attn_map = torch.chunk(attn_map, batch_size)[idx].squeeze()
|
54 |
+
attn_map = upscale(attn_map, image_size)
|
55 |
+
net_attn_maps.append(attn_map)
|
56 |
+
|
57 |
+
net_attn_maps = torch.mean(torch.stack(net_attn_maps,dim=0),dim=0)
|
58 |
+
|
59 |
+
return net_attn_maps
|
60 |
+
|
61 |
+
def attnmaps2images(net_attn_maps):
|
62 |
+
|
63 |
+
#total_attn_scores = 0
|
64 |
+
images = []
|
65 |
+
|
66 |
+
for attn_map in net_attn_maps:
|
67 |
+
attn_map = attn_map.cpu().numpy()
|
68 |
+
#total_attn_scores += attn_map.mean().item()
|
69 |
+
|
70 |
+
normalized_attn_map = (attn_map - np.min(attn_map)) / (np.max(attn_map) - np.min(attn_map)) * 255
|
71 |
+
normalized_attn_map = normalized_attn_map.astype(np.uint8)
|
72 |
+
#print("norm: ", normalized_attn_map.shape)
|
73 |
+
image = Image.fromarray(normalized_attn_map)
|
74 |
+
|
75 |
+
#image = fix_save_attn_map(attn_map)
|
76 |
+
images.append(image)
|
77 |
+
|
78 |
+
#print(total_attn_scores)
|
79 |
+
return images
|
80 |
+
def is_torch2_available():
|
81 |
+
return hasattr(F, "scaled_dot_product_attention")
|
82 |
+
|
83 |
+
def get_generator(seed, device):
|
84 |
+
|
85 |
+
if seed is not None:
|
86 |
+
if isinstance(seed, list):
|
87 |
+
generator = [torch.Generator(device).manual_seed(seed_item) for seed_item in seed]
|
88 |
+
else:
|
89 |
+
generator = torch.Generator(device).manual_seed(seed)
|
90 |
+
else:
|
91 |
+
generator = None
|
92 |
+
|
93 |
+
return generator
|
black_box_image_edit/utils.py
ADDED
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from moviepy.editor import VideoFileClip
|
3 |
+
import random
|
4 |
+
from PIL import Image
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
def crop_and_resize_video(input_video_path, output_folder, clip_duration=None, width=None, height=None, start_time=None, end_time=None, n_frames=16, center_crop=False, x_offset=0, y_offset=0, longest_to_width=False): # Load the video file
|
8 |
+
video = VideoFileClip(input_video_path)
|
9 |
+
|
10 |
+
# Calculate start and end times for cropping
|
11 |
+
if clip_duration is not None:
|
12 |
+
if start_time is not None:
|
13 |
+
start_time = float(start_time)
|
14 |
+
end_time = start_time + clip_duration
|
15 |
+
elif end_time is not None:
|
16 |
+
end_time = float(end_time)
|
17 |
+
start_time = end_time - clip_duration
|
18 |
+
else:
|
19 |
+
# Default to random cropping if neither start nor end time is specified
|
20 |
+
video_duration = video.duration
|
21 |
+
if video_duration <= clip_duration:
|
22 |
+
print(f"Skipping {input_video_path}: duration is less than or equal to the clip duration.")
|
23 |
+
return
|
24 |
+
max_start_time = video_duration - clip_duration
|
25 |
+
start_time = random.uniform(0, max_start_time)
|
26 |
+
end_time = start_time + clip_duration
|
27 |
+
elif start_time is not None and end_time is not None:
|
28 |
+
start_time = float(start_time)
|
29 |
+
end_time = float(end_time)
|
30 |
+
clip_duration = int(end_time - start_time)
|
31 |
+
else:
|
32 |
+
raise ValueError("Either clip_duration must be provided, or both start_time and end_time must be specified.")
|
33 |
+
|
34 |
+
# Crop the video
|
35 |
+
cropped_video = video.subclip(start_time, end_time)
|
36 |
+
|
37 |
+
|
38 |
+
if center_crop:
|
39 |
+
# Calculate scale to ensure the desired crop size fits within the video
|
40 |
+
video_width, video_height = cropped_video.size
|
41 |
+
scale_width = video_width / width
|
42 |
+
scale_height = video_height / height
|
43 |
+
if longest_to_width:
|
44 |
+
scale = max(scale_width, scale_height)
|
45 |
+
else:
|
46 |
+
scale = min(scale_width, scale_height)
|
47 |
+
|
48 |
+
# Resize video to ensure the crop area fits within the frame
|
49 |
+
# This step ensures that the smallest dimension matches or exceeds 512 pixels
|
50 |
+
new_width = int(video_width / scale)
|
51 |
+
new_height = int(video_height / scale)
|
52 |
+
resized_video = cropped_video.resize(newsize=(new_width, new_height))
|
53 |
+
print(f"Resized video to ({new_width}, {new_height})")
|
54 |
+
|
55 |
+
# Calculate crop position with offset, ensuring the crop does not go out of bounds
|
56 |
+
# The offset calculation needs to ensure that the cropping area remains within the video frame
|
57 |
+
offset_x = int(((x_offset + 1) / 2) * (new_width - width)) # Adjusted for [-1, 1] scale
|
58 |
+
offset_y = int(((y_offset + 1) / 2) * (new_height - height)) # Adjusted for [-1, 1] scale
|
59 |
+
|
60 |
+
# Ensure offsets do not push the crop area out of the video frame
|
61 |
+
offset_x = max(0, min(new_width - width, offset_x))
|
62 |
+
offset_y = max(0, min(new_height - height, offset_y))
|
63 |
+
|
64 |
+
# Apply center crop with offsets
|
65 |
+
cropped_video = resized_video.crop(x1=offset_x, y1=offset_y, width=width, height=height)
|
66 |
+
elif width and height:
|
67 |
+
# Directly resize the video to specified width and height if no center crop is specified
|
68 |
+
cropped_video = cropped_video.resize(newsize=(width, height))
|
69 |
+
|
70 |
+
|
71 |
+
# After resizing and cropping, set the frame rate to fps
|
72 |
+
fps = n_frames // clip_duration
|
73 |
+
final_video = cropped_video.set_fps(fps)
|
74 |
+
|
75 |
+
# Prepare the output video path
|
76 |
+
if not os.path.exists(output_folder):
|
77 |
+
os.makedirs(output_folder)
|
78 |
+
filename = os.path.basename(input_video_path)
|
79 |
+
output_video_path = os.path.join(output_folder, filename)
|
80 |
+
|
81 |
+
# Write the result to the output file
|
82 |
+
final_video.write_videofile(output_video_path, codec='libx264', audio_codec='aac', fps=fps)
|
83 |
+
print(f"Processed {input_video_path}, saved to {output_video_path}")
|
84 |
+
return output_video_path
|
85 |
+
|
86 |
+
|
87 |
+
def infer_video_prompt(model, video_path, output_dir, prompt, prompt_type="instruct", force_512=False, seed=42, negative_prompt="", overwrite=False):
|
88 |
+
"""
|
89 |
+
Processes videos from the input directory, resizes them to 512x512 before feeding into the model by first frame,
|
90 |
+
and saves the processed video back to its original size in the output directory.
|
91 |
+
|
92 |
+
Args:
|
93 |
+
model: The video editing model.
|
94 |
+
input_dir (str): Path to the directory containing input videos.
|
95 |
+
output_dir (str): Path to the directory where processed videos will be saved.
|
96 |
+
prompt (str): Instruction prompt for video editing.
|
97 |
+
"""
|
98 |
+
|
99 |
+
# Create the output directory if it does not exist
|
100 |
+
if not os.path.exists(output_dir):
|
101 |
+
os.makedirs(output_dir)
|
102 |
+
|
103 |
+
video_clip = VideoFileClip(video_path)
|
104 |
+
video_filename = os.path.basename(video_path)
|
105 |
+
# filename_noext = os.path.splitext(video_filename)[0]
|
106 |
+
|
107 |
+
# Create the output directory if it does not exist
|
108 |
+
# final_output_dir = os.path.join(output_dir, filename_noext)
|
109 |
+
final_output_dir = output_dir
|
110 |
+
if not os.path.exists(final_output_dir):
|
111 |
+
os.makedirs(final_output_dir)
|
112 |
+
|
113 |
+
result_path = os.path.join(final_output_dir, prompt + ".png")
|
114 |
+
|
115 |
+
# Check if result already exists
|
116 |
+
if os.path.exists(result_path) and overwrite is False:
|
117 |
+
print(f"Result already exists: {result_path}")
|
118 |
+
return
|
119 |
+
|
120 |
+
def process_frame(image):
|
121 |
+
pil_image = Image.fromarray(image)
|
122 |
+
if force_512:
|
123 |
+
pil_image = pil_image.resize((512, 512), Image.LANCZOS)
|
124 |
+
if prompt_type == "instruct":
|
125 |
+
result = model.infer_one_image(pil_image, instruct_prompt=prompt, seed=seed, negative_prompt=negative_prompt)
|
126 |
+
else:
|
127 |
+
result = model.infer_one_image(pil_image, target_prompt=prompt, seed=seed, negative_prompt=negative_prompt)
|
128 |
+
if force_512:
|
129 |
+
result = result.resize(video_clip.size, Image.LANCZOS)
|
130 |
+
return np.array(result)
|
131 |
+
|
132 |
+
# Process only the first frame
|
133 |
+
first_frame = video_clip.get_frame(0) # Get the first frame
|
134 |
+
processed_frame = process_frame(first_frame) # Process the first frame
|
135 |
+
|
136 |
+
|
137 |
+
#Image.fromarray(first_frame).save(os.path.join(final_output_dir, "00000.png"))
|
138 |
+
Image.fromarray(processed_frame).save(result_path)
|
139 |
+
print(f"Processed and saved the first frame: {result_path}")
|
140 |
+
return result_path
|
141 |
+
|
142 |
+
def infer_video_style(model, video_path, output_dir, style_image, prompt, force_512=False, seed=42, negative_prompt="", overwrite=False):
|
143 |
+
if not os.path.exists(output_dir):
|
144 |
+
os.makedirs(output_dir)
|
145 |
+
|
146 |
+
video_clip = VideoFileClip(video_path)
|
147 |
+
video_filename = os.path.basename(video_path)
|
148 |
+
final_output_dir = output_dir
|
149 |
+
if not os.path.exists(final_output_dir):
|
150 |
+
os.makedirs(final_output_dir)
|
151 |
+
|
152 |
+
result_path = os.path.join(final_output_dir, "style" + ".png")
|
153 |
+
if os.path.exists(result_path) and overwrite is False:
|
154 |
+
print(f"Result already exists: {result_path}")
|
155 |
+
return
|
156 |
+
def process_frame(image):
|
157 |
+
pil_image = Image.fromarray(image)
|
158 |
+
if force_512:
|
159 |
+
pil_image = pil_image.resize((512, 512), Image.LANCZOS)
|
160 |
+
result = model.infer_one_image(pil_image,
|
161 |
+
style_image=style_image,
|
162 |
+
prompt=prompt,
|
163 |
+
seed=seed,
|
164 |
+
negative_prompt=negative_prompt)
|
165 |
+
if force_512:
|
166 |
+
result = result.resize(video_clip.size, Image.LANCZOS)
|
167 |
+
return np.array(result)
|
168 |
+
# Process only the first frame
|
169 |
+
first_frame = video_clip.get_frame(0) # Get the first frame
|
170 |
+
processed_frame = process_frame(first_frame) # Process the first frame
|
171 |
+
Image.fromarray(processed_frame).save(result_path)
|
172 |
+
print(f"Processed and saved the first frame: {result_path}")
|
173 |
+
return result_path
|