Spaces:
Running
Running
import os, sys, torch, warnings, pdb | |
warnings.filterwarnings("ignore") | |
import librosa | |
import importlib | |
import numpy as np | |
import hashlib, math | |
from tqdm import tqdm | |
from uvr5_pack.lib_v5 import spec_utils | |
from uvr5_pack.utils import _get_name_params, inference | |
from uvr5_pack.lib_v5.model_param_init import ModelParameters | |
from scipy.io import wavfile | |
class _audio_pre_: | |
def __init__(self, agg, model_path, device, is_half): | |
self.model_path = model_path | |
self.device = device | |
self.data = { | |
# Processing Options | |
"postprocess": False, | |
"tta": False, | |
# Constants | |
"window_size": 512, | |
"agg": agg, | |
"high_end_process": "mirroring", | |
} | |
nn_arch_sizes = [ | |
31191, # default | |
33966, | |
61968, | |
123821, | |
123812, | |
537238, # custom | |
] | |
self.nn_architecture = list("{}KB".format(s) for s in nn_arch_sizes) | |
model_size = math.ceil(os.stat(model_path).st_size / 1024) | |
nn_architecture = "{}KB".format( | |
min(nn_arch_sizes, key=lambda x: abs(x - model_size)) | |
) | |
nets = importlib.import_module( | |
"uvr5_pack.lib_v5.nets" | |
+ f"_{nn_architecture}".replace("_{}KB".format(nn_arch_sizes[0]), ""), | |
package=None, | |
) | |
model_hash = hashlib.md5(open(model_path, "rb").read()).hexdigest() | |
param_name, model_params_d = _get_name_params(model_path, model_hash) | |
mp = ModelParameters(model_params_d) | |
model = nets.CascadedASPPNet(mp.param["bins"] * 2) | |
cpk = torch.load(model_path, map_location="cpu") | |
model.load_state_dict(cpk) | |
model.eval() | |
if is_half: | |
model = model.half().to(device) | |
else: | |
model = model.to(device) | |
self.mp = mp | |
self.model = model | |
def _path_audio_(self, music_file, ins_root=None, vocal_root=None): | |
if ins_root is None and vocal_root is None: | |
return "No save root." | |
name = os.path.basename(music_file) | |
if ins_root is not None: | |
os.makedirs(ins_root, exist_ok=True) | |
if vocal_root is not None: | |
os.makedirs(vocal_root, exist_ok=True) | |
X_wave, y_wave, X_spec_s, y_spec_s = {}, {}, {}, {} | |
bands_n = len(self.mp.param["band"]) | |
# print(bands_n) | |
for d in range(bands_n, 0, -1): | |
bp = self.mp.param["band"][d] | |
if d == bands_n: # high-end band | |
( | |
X_wave[d], | |
_, | |
) = librosa.core.load( # 理论上librosa读取可能对某些音频有bug,应该上ffmpeg读取,但是太麻烦了弃坑 | |
music_file, | |
bp["sr"], | |
False, | |
dtype=np.float32, | |
res_type=bp["res_type"], | |
) | |
if X_wave[d].ndim == 1: | |
X_wave[d] = np.asfortranarray([X_wave[d], X_wave[d]]) | |
else: # lower bands | |
X_wave[d] = librosa.core.resample( | |
X_wave[d + 1], | |
self.mp.param["band"][d + 1]["sr"], | |
bp["sr"], | |
res_type=bp["res_type"], | |
) | |
# Stft of wave source | |
X_spec_s[d] = spec_utils.wave_to_spectrogram_mt( | |
X_wave[d], | |
bp["hl"], | |
bp["n_fft"], | |
self.mp.param["mid_side"], | |
self.mp.param["mid_side_b2"], | |
self.mp.param["reverse"], | |
) | |
# pdb.set_trace() | |
if d == bands_n and self.data["high_end_process"] != "none": | |
input_high_end_h = (bp["n_fft"] // 2 - bp["crop_stop"]) + ( | |
self.mp.param["pre_filter_stop"] - self.mp.param["pre_filter_start"] | |
) | |
input_high_end = X_spec_s[d][ | |
:, bp["n_fft"] // 2 - input_high_end_h : bp["n_fft"] // 2, : | |
] | |
X_spec_m = spec_utils.combine_spectrograms(X_spec_s, self.mp) | |
aggresive_set = float(self.data["agg"] / 100) | |
aggressiveness = { | |
"value": aggresive_set, | |
"split_bin": self.mp.param["band"][1]["crop_stop"], | |
} | |
with torch.no_grad(): | |
pred, X_mag, X_phase = inference( | |
X_spec_m, self.device, self.model, aggressiveness, self.data | |
) | |
# Postprocess | |
if self.data["postprocess"]: | |
pred_inv = np.clip(X_mag - pred, 0, np.inf) | |
pred = spec_utils.mask_silence(pred, pred_inv) | |
y_spec_m = pred * X_phase | |
v_spec_m = X_spec_m - y_spec_m | |
if ins_root is not None: | |
if self.data["high_end_process"].startswith("mirroring"): | |
input_high_end_ = spec_utils.mirroring( | |
self.data["high_end_process"], y_spec_m, input_high_end, self.mp | |
) | |
wav_instrument = spec_utils.cmb_spectrogram_to_wave( | |
y_spec_m, self.mp, input_high_end_h, input_high_end_ | |
) | |
else: | |
wav_instrument = spec_utils.cmb_spectrogram_to_wave(y_spec_m, self.mp) | |
print("%s instruments done" % name) | |
wavfile.write( | |
os.path.join( | |
ins_root, "instrument_{}_{}.wav".format(name, self.data["agg"]) | |
), | |
self.mp.param["sr"], | |
(np.array(wav_instrument) * 32768).astype("int16"), | |
) # | |
if vocal_root is not None: | |
if self.data["high_end_process"].startswith("mirroring"): | |
input_high_end_ = spec_utils.mirroring( | |
self.data["high_end_process"], v_spec_m, input_high_end, self.mp | |
) | |
wav_vocals = spec_utils.cmb_spectrogram_to_wave( | |
v_spec_m, self.mp, input_high_end_h, input_high_end_ | |
) | |
else: | |
wav_vocals = spec_utils.cmb_spectrogram_to_wave(v_spec_m, self.mp) | |
print("%s vocals done" % name) | |
wavfile.write( | |
os.path.join( | |
vocal_root, "vocal_{}_{}.wav".format(name, self.data["agg"]) | |
), | |
self.mp.param["sr"], | |
(np.array(wav_vocals) * 32768).astype("int16"), | |
) | |
if __name__ == "__main__": | |
device = "cuda" | |
is_half = True | |
model_path = "uvr5_weights/2_HP-UVR.pth" | |
pre_fun = _audio_pre_(model_path=model_path, device=device, is_half=True) | |
audio_path = "神女劈观.aac" | |
save_path = "opt" | |
pre_fun._path_audio_(audio_path, save_path, save_path) | |