Spaces:
Running
Running
import json | |
from pathlib import Path | |
from typing import Optional | |
import torch | |
import torch.backends.cuda | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torchvision | |
from transformers.activations import QuickGELUActivation | |
import math | |
from einops.layers.torch import Rearrange | |
import einops | |
MODEL_CONFIGS = { | |
# Custom models trained from scratch | |
# "Standard" definitions: | |
# name | layers | width | heads | |
# B | 12 | 768 | 12 | |
# L | 24 | 1024 | 16 | |
# H | 32 | 1280 | 16 | |
# G | 48 | 1664 | 16 | |
# e | 56 | 1792 | 16 | |
# 22 | 48 | 6144 | 48 | |
# B/16, 224, PaLM, GELU | |
'CustomTest6': { | |
'class': 'CLIPLikeModel', | |
'embedding_dim': 768, | |
'num_attention_heads': 12, | |
'activation_cls': nn.GELU, | |
'num_channels': 3, | |
'patch_size': 16, | |
'use_palm_alt': True, | |
'num_layers': 12, | |
'use_mha_alt': False, | |
'good_dropout': False, | |
}, | |
# GAP head + Sinusoidal positional embeddings + 448 image size | |
'CustomTest18': { | |
'class': 'CLIPLikeModel', | |
'embedding_dim': 768, | |
'num_attention_heads': 12, | |
'activation_cls': nn.GELU, | |
'num_channels': 3, | |
'patch_size': 16, | |
'use_palm_alt': True, | |
'num_layers': 12, | |
'use_mha_alt': False, | |
'good_dropout': False, | |
'use_gap_head': True, | |
'sine_positional_embeddings': True, | |
}, | |
# SW Model + B/16 + ASL + 448 image size | |
# cutout_max_pct = 0 | |
# mixup_alpha = 0.8 | |
# noise_level = 2 | |
# random_resize_method = true | |
# total_labels = 6549 | |
'SWModel1': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': False}, | |
# Sinusoidal positional embeddings | |
'SWModel2': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True}, | |
# Sinusoidal positional embeddings + 224 image size + L/14 | |
'SWModel3': {'class': 'ViT', 'num_blocks': 24, 'patch_size': 14, 'd_model': 1024, 'mlp_dim': 1024*4, 'num_heads': 16, 'stochdepth_rate': 0.05, 'layerscale_init': 1e-1, 'use_sine': True}, | |
# Sinusoidal positional embeddings + 224 image size + G/14 | |
'SWModel4': {'class': 'ViT', 'num_blocks': 48, 'patch_size': 14, 'd_model': 1664, 'mlp_dim': 1664*4, 'num_heads': 16, 'stochdepth_rate': 0.05, 'layerscale_init': 1e-1, 'use_sine': True}, | |
# Sinusoidal positional embeddings + focal loss | |
'SWModel5': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True}, | |
'SWModel6': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True}, | |
'SWModel7': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True}, | |
'SWModel8': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True}, | |
'SWModel9': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True}, | |
'SWModel10': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True}, | |
'SWModel11': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0, 'use_sine': True}, | |
# Trying head_mean_after | |
'SWModel12': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True, 'head_mean_after': True}, | |
# Fat boy | |
'SWModel13': {'class': 'ViT', 'num_blocks': 6, 'patch_size': 16, 'd_model': 1536, 'mlp_dim': 1536*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True}, | |
# L/14 | |
'SWModel14': {'class': 'ViT', 'num_blocks': 24, 'patch_size': 14, 'd_model': 1024, 'mlp_dim': 1024*4, 'num_heads': 16, 'stochdepth_rate': 0.05, 'layerscale_init': 1e-1, 'use_sine': True}, | |
'SWModel15': {'class': 'ViT', 'num_blocks': 24, 'patch_size': 14, 'd_model': 1024, 'mlp_dim': 1024*4, 'num_heads': 16, 'stochdepth_rate': 0.05, 'layerscale_init': 1e-5, 'use_sine': True}, | |
'SWModel16': {'class': 'ViT', 'num_blocks': 24, 'patch_size': 14, 'd_model': 1024, 'mlp_dim': 1024*4, 'num_heads': 16, 'stochdepth_rate': 0.10, 'layerscale_init': 1e-1, 'use_sine': True}, | |
'SWModel16f': {'class': 'ViT', 'num_blocks': 24, 'patch_size': 14, 'd_model': 1024, 'mlp_dim': 1024*4, 'num_heads': 16, 'stochdepth_rate': 0.10, 'layerscale_init': 1e-1, 'use_sine': True}, | |
'SWModel22': {'class': 'ViT', 'num_blocks': 24, 'patch_size': 14, 'd_model': 1024, 'mlp_dim': 1024*4, 'num_heads': 16, 'stochdepth_rate': 0.20, 'layerscale_init': 1e-1, 'use_sine': True}, | |
'SWModel25': {'class': 'ViT', 'num_blocks': 24, 'patch_size': 16, 'd_model': 1024, 'mlp_dim': 1024*4, 'num_heads': 16, 'stochdepth_rate': 0.15, 'layerscale_init': 1e-1, 'use_sine': True, 'cnn_stem': 'conv:c=128;ln;relu;conv:c=256;ln;relu;conv:c=512;ln;relu;conv:c=1024;ln;relu;conv:c=1024,s=1,k=1,p=0'}, | |
# CNN stem | |
'SWModel18': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True, 'cnn_stem': 'conv:c=64;bn;relu;conv:c=128;bn;relu;conv:c=256;bn;relu;conv:c=512;bn;relu;conv:c=768,s=1,k=1'}, | |
'SWModel19': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True, 'cnn_stem': 'conv:c=64;bn;relu;conv:c=128;bn;relu;conv:c=128,s=1;bn;relu;conv:c=256;bn;relu;conv:c=256,s=1;bn;relu;conv:c=512;bn;relu;conv:c=768,s=1,k=1,p=0'}, | |
'SWModel20': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True, 'cnn_stem': 'conv:c=64;ln;relu;conv:c=128;ln;relu;conv:c=256;ln;relu;conv:c=512;ln;relu;conv:c=768,s=1,k=1,p=0'}, | |
'SWModel21': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True, 'cnn_stem': 'conv:c=64;ln;gelu;conv:c=128;ln;gelu;conv:c=256;ln;gelu;conv:c=512;ln;gelu;conv:c=768,s=1,k=1,p=0'}, | |
'SWModel23': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True, 'cnn_stem': 'conv:c=64;ln;relu;conv:c=128;ln;relu;conv:c=256;ln;relu;conv:c=512;ln;relu;conv:c=768,s=1,k=1,p=0'}, | |
'SWModel24': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True, 'cnn_stem': 'conv:c=64;ln;relu;conv:c=128;ln;relu;conv:c=256;ln;relu;conv:c=512;ln;relu;conv:c=768,s=1,k=1,p=0'}, | |
# H/14 | |
'SWModel17': {'class': 'ViT', 'num_blocks': 32, 'patch_size': 14, 'd_model': 1280, 'mlp_dim': 1280*4, 'num_heads': 16, 'stochdepth_rate': 0.05, 'layerscale_init': 1e-1, 'use_sine': True}, | |
'SWModel26': {'class': 'ViT', 'num_blocks': 32, 'patch_size': 14, 'd_model': 1280, 'mlp_dim': 1280*4, 'num_heads': 16, 'stochdepth_rate': 0.15, 'layerscale_init': 1e-1, 'use_sine': True}, | |
} | |
class VisionModel(nn.Module): | |
image_size: int | |
n_tags: int | |
def __init__(self, image_size: int, n_tags: int): | |
super().__init__() | |
self.image_size = image_size | |
self.n_tags = n_tags | |
def load_model(path: Path | str, device: str | None = None) -> 'VisionModel': | |
""" | |
Load a model from a directory. | |
:param path: The directory containing the model. | |
:return: The model, the image size, and the number of tags. | |
""" | |
with open(Path(path) / 'config.json', 'r') as f: | |
config = json.load(f) | |
if (Path(path) / 'model.safetensors').exists(): | |
from safetensors.torch import load_file | |
resume = load_file(Path(path) / 'model.safetensors', device='cpu') | |
else: | |
resume = torch.load(Path(path) / 'model.pt', map_location=torch.device('cpu'))['model'] | |
model_classes = VisionModel.__subclasses__() | |
model_cls = next(cls for cls in model_classes if cls.__name__ == config['class']) | |
model = model_cls(**{k: v for k, v in config.items() if k != 'class'}) | |
model.load(resume) | |
if device is not None: | |
model = model.to(device) | |
return model | |
def from_config(config: dict) -> 'VisionModel': | |
model_classes = VisionModel.__subclasses__() | |
model_cls = next(cls for cls in model_classes if cls.__name__ == config['class']) | |
return model_cls(**{k: v for k, v in config.items() if k != 'class'}) | |
def get_optimized_parameters(self, lr: float): | |
raise NotImplementedError | |
def save(self): | |
raise NotImplementedError | |
def load(self, state_dict): | |
raise NotImplementedError | |
def basic_calculate_loss(preds: dict[str, torch.Tensor], batch: dict, pos_weight: torch.Tensor | None, loss_type: str): | |
def asl_helper(preds, target): | |
p = F.softmax(preds, dim=1) | |
xs_pos = p.clamp(min=1e-6) | |
xs_neg = (1 - p).clamp(min=1e-6) | |
los_pos = torch.log(torch.gather(xs_pos, 1, target.unsqueeze(1))).sum() | |
los_neg = torch.log(xs_neg) | |
los_neg = los_neg.sum() - torch.gather(los_neg, 1, target.unsqueeze(1)).sum() | |
loss = los_pos + los_neg | |
return -loss | |
if loss_type == "ce": | |
loss = F.binary_cross_entropy_with_logits(preds['tags'], batch['tags']) | |
elif loss_type == "weighted": | |
loss = F.binary_cross_entropy_with_logits(preds['tags'], batch['tags'], pos_weight=pos_weight) | |
elif loss_type == "focal": | |
gamma = 2 | |
p = torch.sigmoid(preds['tags']) | |
ce_loss = F.binary_cross_entropy_with_logits(preds['tags'], batch['tags'], reduction='none') | |
p_t = p * batch['tags'] + (1 - p) * (1 - batch['tags']) | |
loss = ce_loss * ((1 - p_t) ** gamma) | |
loss = loss.mean() | |
elif loss_type == "focal2": | |
gamma = 2 | |
p = torch.sigmoid(preds['tags']) | |
ce_loss = F.binary_cross_entropy_with_logits(preds['tags'], batch['tags'], reduction='none') | |
p_t = p * batch['tags'] + (1 - p) * (1 - batch['tags']) | |
loss = ce_loss * ((1 - p_t) ** gamma) * 256 | |
loss = loss.mean() | |
elif loss_type == "asl": | |
p = torch.sigmoid(preds['tags']) | |
xs_pos = p | |
xs_neg = 1 - p | |
los_pos = batch['tags'] * torch.log(xs_pos.clamp(min=1e-6)) | |
los_neg = (1 - batch['tags']) * torch.log(xs_neg.clamp(min=1e-6)) | |
loss = los_pos + los_neg | |
loss = -loss.sum() | |
# Rating | |
loss = loss + asl_helper(preds['rating'], batch['rating']) | |
# Score | |
loss = loss + asl_helper(preds['score'], batch['score']) | |
elif loss_type == "asl2": | |
p = torch.sigmoid(preds['tags']) | |
xs_pos = p | |
xs_neg = 1 - p | |
los_pos = batch['tags'] * torch.log(xs_pos.clamp(min=1e-6)) | |
los_neg = (1 - batch['tags']) * torch.log(xs_neg.clamp(min=1e-6)) | |
loss = -los_pos - los_neg | |
loss = loss.sum() | |
elif loss_type == "asl3": | |
p = torch.sigmoid(preds['tags']) | |
xs_pos = p | |
xs_neg = 1 - p | |
los_pos = batch['tags'] * torch.log(xs_pos.clamp(min=1e-6)) | |
los_neg = (1 - batch['tags']) * torch.log(xs_neg.clamp(min=1e-6)) | |
loss = -los_pos - los_neg | |
loss = loss.mean() | |
elif loss_type == "asl4": | |
p = torch.sigmoid(preds['tags']) | |
xs_pos = p | |
xs_neg = 1 - p | |
los_pos = batch['tags'] * torch.log(xs_pos.clamp(min=1e-6)) | |
los_neg = (1 - batch['tags']) * torch.log(xs_neg.clamp(min=1e-6)) | |
loss = -los_pos - los_neg | |
loss = loss.mean() * 128 | |
elif loss_type == "asl5": | |
loss = F.binary_cross_entropy_with_logits(preds['tags'], batch['tags'], pos_weight=pos_weight) * 128 | |
elif loss_type == "asl6": | |
loss = F.binary_cross_entropy_with_logits(preds['tags'], batch['tags'], pos_weight=pos_weight) * 256 | |
elif loss_type == "asl7": | |
loss = F.binary_cross_entropy_with_logits(preds['tags'], batch['tags'], pos_weight=pos_weight) * 2 | |
else: | |
raise ValueError(f"Invalid loss type: {loss_type}") | |
return loss | |
class CLIPMlp(nn.Module): | |
def __init__(self, hidden_size: int, intermediate_size: int, activation_cls): | |
super().__init__() | |
self.activation_fn = activation_cls() | |
self.fc1 = nn.Linear(hidden_size, intermediate_size) | |
self.fc2 = nn.Linear(intermediate_size, hidden_size) | |
def forward(self, hidden_states: torch.Tensor): | |
hidden_states = self.fc1(hidden_states) | |
hidden_states = self.activation_fn(hidden_states) | |
hidden_states = self.fc2(hidden_states) | |
return hidden_states | |
class FastCLIPAttention2(nn.Module): | |
"""Fast Attention module for CLIP-like. This is NOT a drop-in replacement for CLIPAttention, since it adds additional flexibility. Mainly uses xformers.""" | |
def __init__(self, hidden_size: int, out_dim: int, num_attention_heads: int, out_seq_len: Optional[int] = None, norm_qk: bool = False): | |
super().__init__() | |
self.out_seq_len = out_seq_len | |
self.embed_dim = hidden_size | |
self.out_dim = out_dim | |
self.norm_qk = norm_qk | |
self.num_heads = num_attention_heads | |
self.head_dim = hidden_size // num_attention_heads | |
assert self.head_dim * num_attention_heads == self.embed_dim, "embed_dim must be divisible by num_attention_heads" | |
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
self.kv_proj = nn.Linear(self.embed_dim, self.embed_dim * 2) | |
self.out_proj = nn.Linear(self.embed_dim, self.out_dim) | |
if self.norm_qk: | |
self.query_norm = nn.LayerNorm(self.embed_dim) | |
self.key_norm = nn.LayerNorm(self.embed_dim) | |
#def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): | |
# return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).contiguous() | |
def forward(self, query_states: torch.Tensor, kv_states: torch.Tensor) -> torch.Tensor: | |
bsz, src_len, embed_dim = kv_states.size() | |
if self.out_seq_len is not None: | |
tgt_len = self.out_seq_len | |
else: | |
tgt_len = src_len | |
kv_states = self.kv_proj(kv_states) # (bsz, src_len, embed_dim * 2) | |
q_states = self.q_proj(query_states[:, :tgt_len]) # (bsz, tgt_len, embed_dim) | |
# NOTE: It is not clear if LayerNorm should be applied to the embed_dim, or to the head_dim | |
if self.norm_qk: | |
q_states = self.query_norm(q_states).type(q_states.dtype) | |
k_states = self.key_norm(kv_states[:, :, :embed_dim]).type(kv_states.dtype) | |
v_states = kv_states[:, :, embed_dim:] | |
else: | |
k_states = kv_states[:, :, :embed_dim] | |
v_states = kv_states[:, :, embed_dim:] | |
q_states = q_states.view(bsz, tgt_len, self.num_heads, self.head_dim).transpose(1, 2) # (bsz, num_heads, tgt_len, head_dim) | |
k_states = k_states.view(bsz, src_len, self.num_heads, self.head_dim).transpose(1, 2) # (bsz, num_heads, src_len, head_dim) | |
v_states = v_states.view(bsz, src_len, self.num_heads, self.head_dim).transpose(1, 2) # (bsz, num_heads, src_len, head_dim) | |
# Performs scale of query_states, attention, and softmax | |
with torch.backends.cuda.sdp_kernel(enable_math=False): | |
x = F.scaled_dot_product_attention(q_states, k_states, v_states) # (bsz, num_heads, tgt_len, head_dim) | |
x = x.transpose(1, 2).contiguous().view(bsz, tgt_len, embed_dim) # (bsz, tgt_len, embed_dim) | |
# Projection | |
x = self.out_proj(x) # (bsz, tgt_len, out_dim) | |
return x | |
class SkipInit(nn.Module): | |
def __init__(self, hidden_size: int, channel_wise: bool, init_scale: float): | |
super().__init__() | |
self.hidden_size = hidden_size | |
self.channel_wise = channel_wise | |
self.init_scale = init_scale | |
if self.channel_wise: | |
self.scale = nn.Parameter(torch.ones(hidden_size) * init_scale) | |
else: | |
self.scale = nn.Parameter(torch.tensor(init_scale)) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
return x * self.scale | |
class FastCLIPEncoderLayer(nn.Module): | |
def __init__( | |
self, | |
hidden_size: int, | |
num_attention_heads: int, | |
out_seq_len: Optional[int], | |
activation_cls = QuickGELUActivation, | |
use_palm_alt: bool = False, | |
norm_qk: bool = False, | |
skip_init: Optional[float] = None, | |
stochastic_depth: Optional[float] = None, | |
): | |
super().__init__() | |
self.use_palm_alt = use_palm_alt | |
self.stochastic_depth = stochastic_depth | |
self.self_attn = FastCLIPAttention2( | |
hidden_size=hidden_size, | |
out_dim=hidden_size, | |
num_attention_heads=num_attention_heads, | |
out_seq_len=out_seq_len, | |
norm_qk=norm_qk, | |
) | |
self.mlp = CLIPMlp(hidden_size, 4 * hidden_size, activation_cls) | |
self.layer_norm1 = nn.LayerNorm(hidden_size) | |
if not use_palm_alt: | |
self.layer_norm2 = nn.LayerNorm(hidden_size) | |
if skip_init is not None: | |
self.attn_skip_init = SkipInit(hidden_size, channel_wise=True, init_scale=skip_init) | |
self.mlp_skip_init = SkipInit(hidden_size, channel_wise=True, init_scale=skip_init) | |
else: | |
self.attn_skip_init = nn.Identity() | |
self.mlp_skip_init = nn.Identity() | |
def forward(self, hidden_states: torch.Tensor): | |
residual = hidden_states | |
hidden_states = self.layer_norm1(hidden_states) | |
if not self.use_palm_alt: | |
hidden_states = self.self_attn(query_states=hidden_states, kv_states=hidden_states) | |
hidden_states = self.attn_skip_init(hidden_states) | |
hidden_states = hidden_states + residual[:, :hidden_states.size(1)] | |
residual = hidden_states | |
hidden_states = self.layer_norm2(hidden_states) | |
hidden_states = self.mlp(hidden_states) | |
hidden_states = self.mlp_skip_init(hidden_states) | |
hidden_states = hidden_states + residual | |
else: | |
# An alternative implementation inspired by the PALM paper | |
# By performing the attention and MLP in parallel it's possible to fuse the linear projections of the attention and MLP layers | |
# We don't do that here yet, but that supposedly improves efficiency without hurting performance | |
attn = self.self_attn(query_states=hidden_states, kv_states=hidden_states) | |
attn = self.attn_skip_init(attn) | |
mlp = self.mlp(hidden_states[:, :attn.size(1)]) | |
mlp = self.mlp_skip_init(mlp) | |
if self.stochastic_depth is not None: | |
attn = torchvision.ops.stochastic_depth(attn, self.stochastic_depth, mode='row', training=self.training) | |
mlp = torchvision.ops.stochastic_depth(mlp, self.stochastic_depth, mode='row', training=self.training) | |
hidden_states = residual[:, :attn.size(1)] + attn + mlp | |
return hidden_states | |
def sinusoidal_position_embedding(width: int, height: int, depth: int, dtype, device, temperature = 10000): | |
""" | |
Sinusoidal position embedding. Returns a flat tensor of shape (h * w, d). | |
""" | |
assert depth % 4 == 0, "Embedding dimension must be divisible by 4." | |
y, x = torch.meshgrid(torch.arange(height, device=device), torch.arange(width, device=device), indexing="ij") | |
omega = torch.arange(depth // 4, device=device) / (depth // 4 - 1) | |
omega = 1. / (temperature ** omega) | |
y = y.flatten()[:, None] * omega[None, :] | |
x = x.flatten()[:, None] * omega[None, :] | |
embedding = torch.cat([x.sin(), x.cos(), y.sin(), y.cos()], dim=1) | |
return embedding.type(dtype) | |
class CLIPEmbeddingLayer(nn.Module): | |
def __init__(self, hidden_size: int, num_channels: int, image_size: int, patch_size: int, patch_dropout: float = 0.0, good_dropout: bool = False, dpn: bool = False, sine_positional_embeddings: bool = False): | |
super().__init__() | |
assert image_size % patch_size == 0, "Image dimensions must be divisible by the patch size." | |
seq_len = (image_size // patch_size) ** 2 | |
self.patch_dropout = patch_dropout | |
self.hidden_size = hidden_size | |
self.good_dropout = good_dropout | |
self.dpn = dpn | |
self.sine_positional_embeddings = sine_positional_embeddings | |
self.patch_size = patch_size | |
self.patch_embeddings = nn.Conv2d( | |
in_channels=num_channels, | |
out_channels=hidden_size, | |
kernel_size=patch_size, | |
stride=patch_size, | |
bias=False, | |
) | |
if not self.sine_positional_embeddings: | |
self.positional_embeddings = nn.Embedding(seq_len, hidden_size) | |
self.register_buffer("position_ids", torch.arange(seq_len)) | |
if self.dpn: | |
self.to_patch_embeddings = nn.Sequential( | |
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1=patch_size, p2=patch_size), | |
nn.LayerNorm(3 * patch_size * patch_size), | |
nn.Linear(3 * patch_size * patch_size, hidden_size), | |
nn.LayerNorm(hidden_size), | |
) | |
else: | |
self.to_patch_embeddings = nn.Conv2d( | |
in_channels=num_channels, | |
out_channels=hidden_size, | |
kernel_size=patch_size, | |
stride=patch_size, | |
bias=False, | |
) | |
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: | |
B, C, H, W = pixel_values.shape | |
assert H % self.patch_size == 0, f"Input image height ({H}) needs to be divisible by the patch size ({self.patch_size})." | |
assert W % self.patch_size == 0, f"Input image width ({W}) needs to be divisible by the patch size ({self.patch_size})." | |
if self.dpn: | |
patches = self.to_patch_embeddings(pixel_values) | |
else: | |
patches = self.to_patch_embeddings(pixel_values) | |
patches = patches.flatten(2).transpose(1, 2) | |
seq_len = patches.shape[1] | |
patch_dropout = int(math.ceil((1.0 - self.patch_dropout) * seq_len)) | |
if self.sine_positional_embeddings: | |
position_embeddings = sinusoidal_position_embedding(W // self.patch_size, H // self.patch_size, self.hidden_size, pixel_values.dtype, pixel_values.device) | |
else: | |
position_embeddings = self.positional_embeddings(self.position_ids) | |
if patch_dropout == seq_len or not self.training: | |
embeddings = patches + position_embeddings | |
elif self.good_dropout: | |
# Pick random patches to drop out | |
# The "good_dropout" variant uses random permutations for each batch item, but is slightly slower and involves more code | |
# The below method is a nice trick to generate a batch of random permutations. | |
# Torch (as of 1.13) doesn't have a built-in function to do this, and a for loop of torch.randperm is slow. | |
# Based on some benchmarks I measured the generation of the mask and the fetching to be only 50% slower than the non-"good_dropout" variant. | |
# And the time taken here is only a fraction of the time spent performing the embedding convolution. | |
# Generate a matrix of random numbers between 0 and 1 of shape (B, seq_len) | |
patch_mask = torch.rand(B, seq_len, device=patches.device) | |
# For each batch tensor, use argsort to convert the random numbers into a permutation of the patch indices | |
patch_mask = torch.argsort(patch_mask, dim=1) | |
# Truncate | |
patch_mask = patch_mask[:, :patch_dropout] | |
embeddings = patches.gather(1, patch_mask.unsqueeze(-1).expand(-1, -1, self.hidden_size)) + position_embeddings[patch_mask] | |
else: | |
# The non-"good_dropout" variant uses a single random permutation for all batch items, but is faster and uses less code | |
indices = torch.randperm(seq_len, device=pixel_values.device)[:patch_dropout] | |
embeddings = patches[:, indices, :] + position_embeddings[indices.expand(1, -1)] | |
return embeddings | |
class MHAPoolingHead(nn.Module): | |
def __init__(self, hidden_size: int, num_attention_heads: int, activation_cls, out_dim: int, alt_style: bool, norm_qk: bool): | |
super().__init__() | |
self.out_dim = out_dim if not alt_style else hidden_size | |
self.probe = nn.Parameter(torch.randn(hidden_size)) | |
self.mlp = CLIPMlp(hidden_size, 4 * hidden_size, activation_cls) | |
self.layer_norm = nn.LayerNorm(hidden_size) | |
self.pooling_head = nn.Linear(hidden_size, 1) | |
self.self_attn = FastCLIPAttention2( | |
hidden_size=hidden_size, | |
out_dim=self.out_dim, | |
num_attention_heads=num_attention_heads, | |
out_seq_len=1, | |
norm_qk=norm_qk, | |
) | |
self.mlp = CLIPMlp(self.out_dim, 4 * self.out_dim, activation_cls) | |
self.layer_norm1 = nn.LayerNorm(hidden_size) | |
self.layer_norm2 = nn.LayerNorm(self.out_dim) | |
if alt_style: | |
self.final_proj = nn.Linear(hidden_size, out_dim) | |
else: | |
self.final_proj = nn.Identity() | |
def forward(self, hidden_states: torch.Tensor): | |
hidden_states = self.layer_norm1(hidden_states) | |
query_states = self.probe.unsqueeze(0).unsqueeze(0).expand(hidden_states.size(0), 1, -1) | |
hidden_states = self.self_attn(query_states=query_states, kv_states=hidden_states) | |
# We don't use a residual connection here because the out_dim is different from the hidden_size | |
residual = hidden_states | |
hidden_states = self.layer_norm2(hidden_states) | |
hidden_states = self.mlp(hidden_states) | |
hidden_states = hidden_states + residual | |
hidden_states = self.final_proj(hidden_states) | |
return hidden_states.squeeze(1) | |
class GAPHead(nn.Module): | |
def __init__(self, hidden_size: int, out_dim: int): | |
super().__init__() | |
self.norm = nn.LayerNorm(hidden_size) | |
self.proj = nn.Linear(hidden_size, out_dim) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
x = x.mean(dim=1) | |
x = self.norm(x) | |
x = self.proj(x) | |
return x | |
class CLIPLikeModel(VisionModel): | |
def __init__( | |
self, | |
n_tags: int, | |
embedding_dim: int, | |
num_attention_heads: int, | |
activation_cls, | |
num_channels: int, | |
image_size: int, | |
patch_size: int, | |
patch_dropout: float, | |
use_palm_alt: bool, | |
num_layers: int, | |
use_mha_alt: bool, | |
loss_type: str, | |
good_dropout: bool=False, | |
dpn: bool=False, | |
sine_positional_embeddings: bool=False, | |
norm_qk: bool = False, | |
no_wd_bias: bool = False, | |
use_gap_head: bool = False, | |
skip_init: Optional[float] = None, | |
stochastic_depth: Optional[float] = None, | |
): | |
super().__init__(image_size, n_tags) | |
out_dim = n_tags | |
self.n_tags = n_tags | |
self.loss_type = loss_type | |
self.no_wd_bias = no_wd_bias | |
stochastic_depth_space = torch.linspace(0, stochastic_depth, num_layers) if stochastic_depth is not None else None | |
self.embedding_layer = CLIPEmbeddingLayer(embedding_dim, num_channels, image_size, patch_size, patch_dropout, good_dropout, dpn, sine_positional_embeddings) | |
self.pre_layer_norm = nn.LayerNorm(embedding_dim) | |
self.encoder_layers = nn.ModuleList([FastCLIPEncoderLayer( | |
hidden_size=embedding_dim, | |
num_attention_heads=num_attention_heads, | |
out_seq_len=None, | |
activation_cls=activation_cls, | |
use_palm_alt=use_palm_alt, | |
norm_qk=norm_qk, | |
skip_init=skip_init, | |
stochastic_depth=stochastic_depth_space[i].item() if stochastic_depth_space is not None else None, | |
) for i in range(num_layers)]) | |
if use_gap_head: | |
self.pooling_head = GAPHead(embedding_dim, out_dim) | |
else: | |
self.pooling_head = MHAPoolingHead(embedding_dim, num_attention_heads, activation_cls, out_dim, use_mha_alt, norm_qk=norm_qk) | |
def forward(self, batch): | |
hidden_states = self.embedding_layer(batch['image']) | |
hidden_states = self.pre_layer_norm(hidden_states) | |
for layer in self.encoder_layers: | |
hidden_states = layer(hidden_states) | |
preds = self.pooling_head(hidden_states) | |
result = { | |
'tags': preds, | |
} | |
return result | |
def calculate_loss(self, preds, batch, pos_weight): | |
return basic_calculate_loss(preds, batch, pos_weight, self.loss_type) | |
def get_optimized_parameters(self, lr: float): | |
if self.no_wd_bias: | |
return self.get_optimized_parameters_no_wd_bias() | |
else: | |
return self.parameters() | |
def get_optimized_parameters_no_wd_bias(self): | |
decay = [] | |
no_decay = [] | |
for name, param in self.named_parameters(): | |
if not param.requires_grad: | |
continue | |
if len(param.shape) == 1 or name.endswith(".bias"): | |
no_decay.append(param) | |
print(f'No decay: {name}') | |
else: | |
decay.append(param) | |
return [ | |
{'params': decay}, | |
{'params': no_decay, 'weight_decay': 0.}, | |
] | |
def save(self): | |
return self.state_dict() | |
def load(self, state_dict): | |
self.load_state_dict(state_dict) | |
class MaskedAutoEncoderViT(nn.Module): | |
def __init__( | |
self, | |
n_tags: int, | |
embedding_dim: int, | |
num_attention_heads: int, | |
activation_cls, | |
num_channels: int, | |
image_size: int, | |
patch_size: int, | |
num_layers: int, | |
loss_type: str, | |
sine_positional_embeddings: bool=False, | |
decoder_embedding_dim: int = 512, | |
decoder_num_attention_heads: int = 8, | |
decoder_num_layers: int = 6, | |
decoder_force_projection: bool = False, | |
masking_ratio: float = 0.75, | |
mae_loss_weight: float = 1.0, | |
mae_normalize_targets: bool = False, | |
mae_post_norm: bool = False, | |
): | |
super().__init__() | |
self.n_tags = n_tags | |
self.seq_len = (image_size // patch_size) ** 2 | |
self.embedding_dim = embedding_dim | |
self.decoder_embedding_dim = decoder_embedding_dim | |
self.sine_positional_embeddings = sine_positional_embeddings | |
self.image_size = image_size | |
self.patch_size = patch_size | |
self.masking_ratio = masking_ratio | |
self.loss_type = loss_type | |
self.mae_loss_weight = mae_loss_weight | |
self.mae_normalize_targets = mae_normalize_targets | |
if not self.sine_positional_embeddings: | |
self.positional_embeddings = nn.Embedding(self.seq_len, embedding_dim) | |
self.decoder_positional_embeddings = nn.Embedding(self.seq_len, decoder_embedding_dim) | |
self.register_buffer("position_ids", torch.arange(self.seq_len)) | |
self.to_patches = Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1=patch_size, p2=patch_size) | |
self.patch_embedder = nn.Linear(num_channels * patch_size * patch_size, embedding_dim) | |
# Encoder | |
self.pre_layer_norm = nn.LayerNorm(embedding_dim) | |
self.encoder_layers = nn.ModuleList([FastCLIPEncoderLayer( | |
hidden_size=embedding_dim, | |
num_attention_heads=num_attention_heads, | |
out_seq_len=None, | |
activation_cls=activation_cls, | |
use_palm_alt=True, | |
norm_qk=False, | |
skip_init=None, | |
) for _ in range(num_layers)]) | |
# Head for classification | |
self.pooling_head = GAPHead(embedding_dim, n_tags) | |
# Decoder | |
if embedding_dim != decoder_embedding_dim or decoder_force_projection: | |
self.encoder_to_decoder_proj = nn.Linear(embedding_dim, decoder_embedding_dim) | |
else: | |
self.encoder_to_decoder_proj = nn.Identity() | |
self.decoder_pre_layer_norm = nn.LayerNorm(decoder_embedding_dim) | |
self.decoder_layers = nn.ModuleList([FastCLIPEncoderLayer( | |
hidden_size=decoder_embedding_dim, | |
num_attention_heads=decoder_num_attention_heads, | |
out_seq_len=None, | |
activation_cls=activation_cls, | |
use_palm_alt=True, | |
norm_qk=False, | |
skip_init=None, | |
) for _ in range(decoder_num_layers)]) | |
if mae_post_norm: | |
self.decoder_to_pixel_values = nn.Sequential( | |
nn.LayerNorm(decoder_embedding_dim), | |
nn.Linear(decoder_embedding_dim, num_channels * patch_size * patch_size) | |
) | |
else: | |
self.decoder_to_pixel_values = nn.Linear(decoder_embedding_dim, num_channels * patch_size * patch_size) | |
self.mask_token = nn.Parameter(torch.zeros(decoder_embedding_dim)) | |
torch.nn.init.normal_(self.mask_token, std=0.02) | |
def forward(self, batch): | |
pixel_values = batch['image'] | |
device = pixel_values.device | |
B, C, H, W = pixel_values.shape | |
assert H % self.patch_size == 0, f"Input image height ({H}) needs to be divisible by the patch size ({self.patch_size})." | |
assert W % self.patch_size == 0, f"Input image width ({W}) needs to be divisible by the patch size ({self.patch_size})." | |
# Convert image to patches (B, seq_len, C * patch_size * patch_size) | |
patches = self.to_patches(pixel_values) | |
seq_len = patches.shape[1] | |
num_masked = int(self.masking_ratio * seq_len) | |
# For each batch tensor, use argsort to convert the random numbers into a permutation of the patch indices | |
# From this we can get the masked and unmasked indices | |
patch_mask = torch.rand(B, seq_len, device=device) | |
patch_mask = torch.argsort(patch_mask, dim=1) | |
masked_indices, unmasked_indices = patch_mask[:, :num_masked], patch_mask[:, num_masked:] | |
batch_range = torch.arange(B, device=device)[:, None] | |
# Masked and unmasked patches | |
unmasked_patches = patches[batch_range, unmasked_indices] | |
masked_patches = patches[batch_range, masked_indices] | |
# Embed unmasked patches for the encoder (B, seq_len, embedding_dim) | |
tokens = self.patch_embedder(unmasked_patches) | |
if self.sine_positional_embeddings: | |
position_embeddings = sinusoidal_position_embedding(W // self.patch_size, H // self.patch_size, self.embedding_dim, pixel_values.dtype, device) | |
decoder_position_embeddings = sinusoidal_position_embedding(W // self.patch_size, H // self.patch_size, self.decoder_embedding_dim, pixel_values.dtype, device) | |
else: | |
position_embeddings = self.positional_embeddings(self.position_ids) | |
decoder_position_embeddings = self.decoder_positional_embeddings(self.position_ids) | |
# Add position embeddings | |
tokens = tokens + position_embeddings[unmasked_indices] | |
# Run the encoder | |
encoded_tokens = self.pre_layer_norm(tokens) | |
for layer in self.encoder_layers: | |
encoded_tokens = layer(encoded_tokens) | |
# Label predictions | |
if self.training: | |
preds = self.pooling_head(encoded_tokens) | |
else: | |
# During inference, classify using the entire image | |
# But we'll do the usual for the MAE part, just so we can see how MAE is performing during validation | |
tokens = self.patch_embedder(patches) | |
tokens = tokens + position_embeddings | |
tokens = self.pre_layer_norm(tokens) | |
for layer in self.encoder_layers: | |
tokens = layer(tokens) | |
preds = self.pooling_head(tokens) | |
# Projection for the decoder and position embeddings | |
decoder_tokens = self.encoder_to_decoder_proj(encoded_tokens) | |
decoder_tokens = decoder_tokens + decoder_position_embeddings[unmasked_indices] | |
# Fill in the masked patches | |
mask_tokens = einops.repeat(self.mask_token, 'd -> b n d', b = B, n = num_masked) | |
mask_tokens = mask_tokens + decoder_position_embeddings[masked_indices] | |
decoder_tokens = torch.cat([decoder_tokens, mask_tokens], dim=1) | |
# Run the decoder | |
decoded_tokens = self.decoder_pre_layer_norm(decoder_tokens) | |
for layer in self.decoder_layers: | |
decoded_tokens = layer(decoded_tokens) | |
# Only predict the masked patches | |
# All the masked patches are at the end of the sequence | |
decoded_tokens = decoded_tokens[:, -num_masked:] | |
pred_pixel_values = self.decoder_to_pixel_values(decoded_tokens) | |
# Calculate the mae loss | |
if self.mae_normalize_targets: | |
# Normalize each patch by its mean and variance. The ViCHA paper says this provides better results | |
means = masked_patches.mean(dim=-1, keepdim=True) | |
vars = masked_patches.var(dim=-1, keepdim=True) | |
target = (masked_patches - means) / (vars + 1e-6)**0.5 | |
mae_loss = F.mse_loss(pred_pixel_values, target) | |
else: | |
mae_loss = F.mse_loss(pred_pixel_values, masked_patches) | |
mae_loss = mae_loss * self.mae_loss_weight | |
return { | |
'tags': preds, | |
'mae_loss': mae_loss, | |
} | |
def calculate_loss(self, preds, batch, pos_weight): | |
return basic_calculate_loss(preds, batch, pos_weight, self.loss_type) + preds['mae_loss'] | |
def get_optimized_parameters(self, lr: float): | |
return self.parameters() | |
def save(self): | |
return self.state_dict() | |
def load(self, state_dict): | |
self.load_state_dict(state_dict) | |
class StochDepth(nn.Module): | |
def __init__(self, drop_rate: float, scale_by_keep: bool = False): | |
super().__init__() | |
self.drop_rate = drop_rate | |
self.scale_by_keep = scale_by_keep | |
def forward(self, x): | |
if not self.training: | |
return x | |
batch_size = x.shape[0] | |
r = torch.rand((batch_size, 1, 1), device=x.device) | |
keep_prob = 1 - self.drop_rate | |
binary_tensor = torch.floor(keep_prob + r) | |
if self.scale_by_keep: | |
x = x / keep_prob | |
return x * binary_tensor | |
class SkipInitChannelwise(nn.Module): | |
def __init__(self, channels, init_val=1e-6): | |
super().__init__() | |
self.channels = channels | |
self.init_val = init_val | |
self.skip = nn.Parameter(torch.ones(channels) * init_val) | |
def forward(self, x): | |
return x * self.skip | |
class PosEmbedding(nn.Module): | |
def __init__(self, d_model: int, max_len: int, use_sine: bool, patch_size: int): | |
super().__init__() | |
self.d_model = d_model | |
self.max_len = max_len | |
self.use_sine = use_sine | |
self.patch_size = patch_size | |
if not self.use_sine: | |
self.embedding = nn.Embedding(max_len, d_model) | |
nn.init.trunc_normal_(self.embedding.weight, std=0.02) | |
self.register_buffer("position_ids", torch.arange(max_len)) | |
def forward(self, x, width: int, height: int): | |
if self.use_sine: | |
position_embeddings = sinusoidal_position_embedding(width // self.patch_size, height // self.patch_size, self.d_model, x.dtype, x.device) | |
else: | |
position_embeddings = self.embedding(self.position_ids) | |
return x + position_embeddings | |
class MLPBlock(nn.Module): | |
def __init__(self, d_model: int, d_ff: int, stochdepth_rate: float): | |
super().__init__() | |
self.linear1 = nn.Linear(d_model, d_ff) | |
self.linear2 = nn.Linear(d_ff, d_model) | |
self.activation = nn.GELU() | |
if stochdepth_rate > 0: | |
self.stochdepth = StochDepth(stochdepth_rate, scale_by_keep=True) | |
else: | |
self.stochdepth = None | |
def forward(self, x): | |
x = self.linear1(x) | |
x = self.activation(x) | |
if self.stochdepth is not None: | |
x = self.stochdepth(x) | |
x = self.linear2(x) | |
return x | |
class ViTBlock(nn.Module): | |
def __init__(self, num_heads: int, d_model: int, d_ff: int, layerscale_init: float, stochdepth_rate: float): | |
super().__init__() | |
self.num_heads = num_heads | |
self.d_model = d_model | |
assert d_model % num_heads == 0, "d_model must be divisible by num_heads" | |
# MHA | |
self.norm1 = nn.LayerNorm(d_model) | |
self.qkv_proj = nn.Linear(d_model, d_model * 3) | |
self.out_proj = nn.Linear(d_model, d_model) | |
self.skip_init1 = SkipInitChannelwise(channels=d_model, init_val=layerscale_init) | |
self.stochdepth1 = StochDepth(stochdepth_rate, scale_by_keep=True) if stochdepth_rate > 0 else None | |
# MLP | |
self.norm2 = nn.LayerNorm(d_model) | |
self.mlp = MLPBlock(d_model, d_ff, stochdepth_rate) | |
self.skip_init2 = SkipInitChannelwise(channels=d_model, init_val=layerscale_init) | |
self.stochdepth2 = StochDepth(stochdepth_rate, scale_by_keep=True) if stochdepth_rate > 0 else None | |
def forward(self, x): | |
bsz, src_len, embed_dim = x.shape | |
out = x | |
out = self.norm1(out) | |
# MHA | |
qkv_states = self.qkv_proj(out).split(self.d_model, dim=-1) | |
q_states = qkv_states[0].view(bsz, src_len, self.num_heads, embed_dim // self.num_heads).transpose(1, 2) # (bsz, num_heads, src_len, embed_dim // num_heads) | |
k_states = qkv_states[1].view(bsz, src_len, self.num_heads, embed_dim // self.num_heads).transpose(1, 2) # (bsz, num_heads, src_len, embed_dim // num_heads) | |
v_states = qkv_states[2].view(bsz, src_len, self.num_heads, embed_dim // self.num_heads).transpose(1, 2) # (bsz, num_heads, src_len, embed_dim // num_heads) | |
with torch.backends.cuda.sdp_kernel(enable_math=False): | |
out = F.scaled_dot_product_attention(q_states, k_states, v_states) # (bsz, num_heads, tgt_len, head_dim) | |
out = out.transpose(1, 2).contiguous().view(bsz, src_len, embed_dim) # (bsz, tgt_len, embed_dim) | |
out = self.out_proj(out) | |
out = self.skip_init1(out) | |
if self.stochdepth1 is not None: | |
out = self.stochdepth1(out) | |
x = out + x | |
out = self.norm2(x) | |
out = self.mlp(out) | |
out = self.skip_init2(out) | |
if self.stochdepth2 is not None: | |
out = self.stochdepth2(out) | |
out = out + x | |
return out | |
def CaiT_LayerScale_init(network_depth): | |
if network_depth <= 18: | |
return 1e-1 | |
elif network_depth <= 24: | |
return 1e-5 | |
else: | |
return 1e-6 | |
class CNNLayerNorm(nn.Module): | |
def __init__(self, d_model: int): | |
super().__init__() | |
self.norm = nn.LayerNorm(d_model) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
x = x.transpose(1, 3) | |
x = self.norm(x) | |
x = x.transpose(1, 3) | |
return x | |
class CNNStem(nn.Module): | |
def __init__(self, config: str): | |
super().__init__() | |
self.config = config | |
layers = [] | |
channels = 3 | |
for line in config.split(";"): | |
ty, line = line.split(":") if ":" in line else (line, "") | |
options = line.split(",") | |
options = [o.split("=") for o in options] if line else [] | |
options = {k: v for k, v in options} | |
if ty == 'conv': | |
layers.append(nn.Conv2d( | |
in_channels=channels, | |
out_channels=int(options['c']), | |
kernel_size=int(options['k'] if 'k' in options else 3), | |
stride=int(options['s'] if 's' in options else 2), | |
bias=True, | |
padding=int(options['p'] if 'p' in options else 1), | |
)) | |
channels = int(options['c']) | |
elif ty == 'bn': | |
layers.append(nn.BatchNorm2d(channels)) | |
elif ty == 'ln': | |
layers.append(CNNLayerNorm(channels)) | |
elif ty == 'relu': | |
layers.append(nn.ReLU()) | |
elif ty == 'gelu': | |
layers.append(nn.GELU()) | |
self.conv = nn.Sequential(*layers) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
return self.conv(x) | |
class ViT(VisionModel): | |
def __init__(self, | |
n_tags: int, | |
image_size: int, | |
num_blocks: int, | |
patch_size: int, | |
d_model: int, | |
mlp_dim: int, | |
num_heads: int, | |
stochdepth_rate: float, | |
use_sine: bool, | |
loss_type: str, | |
layerscale_init: Optional[float] = None, | |
head_mean_after: bool = False, | |
cnn_stem: str | None = None, | |
patch_dropout: float = 0.0, | |
): | |
super().__init__(image_size, n_tags) | |
#assert image_size % patch_size == 0, "image_size must be divisible by patch_size" | |
assert d_model % num_heads == 0, "d_model must be divisible by num_heads" | |
out_dim = n_tags | |
self.n_tags = n_tags | |
self.loss_type = loss_type | |
self.patch_size = patch_size | |
self.head_mean_after = head_mean_after | |
self.patch_dropout = patch_dropout | |
layerscale_init = CaiT_LayerScale_init(num_blocks) if layerscale_init is None else layerscale_init | |
self.patch_embeddings = nn.Conv2d( | |
in_channels=3, | |
out_channels=d_model, | |
kernel_size=patch_size, | |
stride=patch_size, | |
bias=True, | |
) if cnn_stem is None else CNNStem(cnn_stem) | |
self.pos_embedding = PosEmbedding(d_model, (image_size // patch_size) ** 2, use_sine=use_sine, patch_size=patch_size) | |
self.blocks = nn.ModuleList([ | |
ViTBlock(num_heads, d_model, mlp_dim, layerscale_init, stochdepth_rate) | |
for _ in range(num_blocks) | |
]) | |
self.norm = nn.LayerNorm(d_model) | |
self.head = nn.Linear(d_model, out_dim) | |
def forward(self, batch, return_embeddings=False, return_loss: bool = False, pos_weight = None): | |
B, C, H, W = batch['image'].shape | |
assert H % self.patch_size == 0, f"Input image height ({H}) needs to be divisible by the patch size ({self.patch_size})." | |
assert W % self.patch_size == 0, f"Input image width ({W}) needs to be divisible by the patch size ({self.patch_size})." | |
x = self.patch_embeddings(batch['image']) # (bsz, d_model, patch_num, patch_num) | |
x = x.flatten(2).transpose(1, 2) # (bsz, patch_num ** 2, d_model) | |
x = self.pos_embedding(x, W, H) # (bsz, patch_num ** 2, d_model) | |
# Patch dropout | |
seq_len = x.shape[1] | |
patch_dropout = int(math.ceil((1.0 - self.patch_dropout) * seq_len)) | |
if patch_dropout != seq_len: | |
# Generate a matrix of random numbers between 0 and 1 of shape (B, seq_len) | |
patch_mask = torch.rand(B, seq_len, device=x.device) | |
# For each batch tensor, use argsort to convert the random numbers into a permutation of the patch indices | |
patch_mask = torch.argsort(patch_mask, dim=1) | |
# Truncate | |
patch_mask = patch_mask[:, :patch_dropout] | |
x = x.gather(1, patch_mask.unsqueeze(-1).expand(-1, -1, x.shape[-1])) | |
#indices = torch.randperm(seq_len, device=x.device)[:patch_dropout] | |
#x = x[:, indices, :] | |
# Transformer | |
for block in self.blocks: | |
x = block(x) | |
# Head | |
result = {} | |
x = self.norm(x) | |
if self.head_mean_after: | |
x = self.head(x) | |
x = x.mean(dim=1) | |
else: | |
x = x.mean(dim=1) | |
if return_embeddings: | |
result['embeddings'] = x | |
x = self.head(x) | |
result['tags'] = x | |
if return_loss: | |
result['loss'] = self.calculate_loss(result, batch, pos_weight) | |
return result | |
def calculate_loss(self, preds, batch, pos_weight): | |
return basic_calculate_loss(preds, batch, pos_weight, self.loss_type) | |
def get_optimized_parameters(self, lr: float): | |
return self.parameters() | |
def save(self): | |
return self.state_dict() | |
def load(self, state_dict): | |
if 'head.weight' in state_dict and 'head.bias' in state_dict and state_dict['head.weight'].shape[0] == (self.n_tags + 9): | |
# Support old models which included 3 rating and 6 score dimensions | |
state_dict['head.weight'] = state_dict['head.weight'][:self.n_tags] | |
state_dict['head.bias'] = state_dict['head.bias'][:self.n_tags] | |
self.load_state_dict(state_dict) |